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Probabilistic U.S. county-level climate projections: 
A new data set for local climate risk analysis

The risk of an adverse event is de�ned by its probability times its consequence. Low probability, high 
consequence events are of interest to those managing �nancial and economic risks
The Problem:
•Quantitative assessment of future climate change risk requires probabilistic projections of physical 
climate variables
•Coupled Model Intercomparison Project (CMIP) climate model (GCM) ensembles are not 
probability distributions and GCMs may exclude extreme climate outcomes
Approach and Key Findings:
•Combine spatially detailed projections from GCMs with probabilistic projections of global mean 
temperature from a simple climate model
•We reproduce the likely (67% probability) outcome range from the CMIP5 and also provide esti-
mates of low probability, high consequence outcomes not produced by GCMs.
“So What?”:
•We have created an open-source data set of county-level probabilistic climate projections to sup-
port decision making at local scales and climate risk assessments, such as Economic Risks of Climate 
Change: An American Prospectus
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Quantifying local projection uncertainty

Roadmaps for two methods: SMME & MCPR

GCM ensembles are not probability distributions 
Construction of model surrogates

1. Surrogate/Model Mixed Ensemble (SMME)

GCM model ensembles, like the CMIP5, are arbitrarily compiled on the basis of modeling center partici-
pation. Sampling from such a distribution by assigning equal probability to all models may therefore 
yield a biased outcome1

 Our dataset will be available for download through a URL given in the �nal paper, currently in review with Journal of Applied Meteorology and Climatology. Summary statistics of 
both probabilistic climate projections and sectoral impacts are currently available at www.climateprospectus.org. A draft of our paper is currently available on arXiv: Rasmussen 
D.J., M. Meinshausen, and R.E. Kopp, Probability-weighted ensembles of U.S. county-level climate projections for climate risk analysis. 
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Simple Climate Models (SCMs) like MAGICC62,3, can produce probability distributions of global mean 
temperature, but lack the spatial resolution necessary for local climate risk assessment.  To solve this, 
we combine spatially resolving GCMs with SCM projections of probabilistic global mean temperature.
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June-July-August Precipitation 
Pattern for New York City
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ΔPlocal = 0.21+0.19 ΔTglobal
ΔTlocal = 0.25 + 1.5 ΔTglobal
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Pattern scaling8 is used to estimate global-local climate relationships

red = CMIP5 models
dark blue = median
grey = SMME surrogates
light shade = 1st/99th
medium shade = 5th/95th
heavy shade =17th/83rd

The probabilistic projections reproduce likely (67% probability) 
outcomes and also project 5th/95th percentile outcomes not 
simulated in the CMIP5

Probabilistic estimates of 95th percentile temperature increase 
(SMME, MCPR) exceed warmest CMIP5 projection for many loca-
tions

Probabilistic climate projections for the U.S.

Globally, model uncertainty dominates until late century and locally, unforced 
variability dominates until late century.

1981-2010 average

Probabilistic projections of global tempera-
ture from SCMs include temperature path-
ways and equilibrium climate sensitivities 
(ECS) that are not simulated or observed in 
GCMs. For instance, in the CMIP5, the ECS 
range is 2.1-4.7°C per CO2 doubling4, observa-
tions and non-GCM constraints suggest ~ 17% 
probability ECS could be higher than 4.5°C5

We generate probabilistic projections of 
global mean temperature using 600 runs of 
MAGICC6 in probabilistic mode (all four RCPs). 
Note that these projections are conditional on 
one PDF and the use of other prior PDFs may 
be more appripriate6

Download the Dataset

Probabilistic projections
of global mean temperature

Randomly selected
CMIP5 T and P patterns

Randomly selected
CMIP5 unforced
T and P pattern 
residuals 

Gridded probabilistic projections
of forced seasonal

T and P change

Gridded probabilistic projections
of monthly T and P change

Historical baseline T and P
and relationships
of daily T and P

to monthly means

Station-level realizations
of daily T and P

We generate ‘model surrogates’ 
(ghosted) to cover the tails of the 
probability distribution where 
global temperature outcomes 
are not represented by a CMIP5 
GCM
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Pattern scaling uses ordinary least squares 
regression to construct global-local rela-
tionships. Pattern scaling assumes the aver-
age change in local temperature and pre-
cipitation is proportional to forced climate 
change (30-yr running average change in 
global mean temperature from the parent 
GCM, here GFDL-CM3)

Pattern scaling assumes that global-local 
relationships are constant with global 
forcing, which may or may not be true

The local deviation from the forced change (i.e. the regression residuals) are interpreted as unforced climate variability

We sum unforced variability and 
forced temperature change (a time 
series of MAGICC global mean tem-
perature scaled by the local pattern, 
i.e. 1.5ΔTglobal for NYC temperature, 
GFDL-CM3)

For MCPR, randomly assign patterns 
and residuals, SMME has ad hoc 
method based on GCM representa-
tion in assigned global temperature 
bins (see paper for details)

Finally, historical weather 
variability from gridded 
weather observations9  is used 
to temporally downscale 
monthly averages to daily 
weather realizations

solid = CMIP5, dotted = MCPR, dashed = SMME

For decision making purposes, it is useful to quantify future climate change projection uncer-
tainty. Following Hawkins and Sutton (2009), we decompose local temperature projections 
into 1) forced 2) unforced and 3) scenario (i.e. emissions) variability, each evolving with time. 
Pattern scaling regression residuals are used as estimates of unforced variability.
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Probabilistic estimates of 95th per-
centile number of days with Tmax > 
35°C experienced by the average 
American (SMME, MCPR) exceed 
warmest CMIP5 model projections.

All ensembles project likely (67% 
probability) drying in the South-
west during March-April-May

Time series of daily probabilistic climate projections like
these are well suited for use with sector-speci�c impacts models and damage functions, including 
those jointly dependent on temperature and precipitation.

Forced pattern and unfored variability from GFDL-CM3; RCP 8.5 New York City 

Model surrogates used to cover the tails of the 
distribution must spatially resolve local projec-
tions of climate change under global tempera-
ture pathways not simulated in GCMs.
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Economic Risks of Climate Change: An American Prospectus is 
now available through Columbia University Press and Amazon

Climate risk assessment requires probability distributions

We use GCM output that has been bias-corrected 
and spatially-disaggregated (BCSD)7 (Tmin, Tmax, 
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