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D.J. Rasmussen, R.E. Kopp, and M. 
Oppenheimer (in prep): A damage 

allowance framework for calculating 
the design heights of coastal flood 

protection options under deeply 
uncertain future Antarctic ice melt.

Available at : bit.ly/2VFd1nJ

[NY Times]

https://bit.ly/2VFd1nJ


New York $465 million

Miami $1,253 million

Boston $56 million

Baltimore $8 million

Norfolk $34 million

Jacksonville $111 million

Charleston $251 million

Tampa $887 million

Houston $1,239 million

Cities around the eastern U.S. are exposed to coastal flood risk

[Modeling from Risk Management Solutions] 

Annual average loss due to flooding (present) 

Risk
1.Hazard

2. Exposure
3.Vulnerability



Sea-level rise leads to expanding flood zones

[Climate Impact Lab; Houser et al., 2015] 

1% annual probability of flooding, New York City and New Jersey

Assumes historical storm climate



So what can we do to 
reduce coastal flood risk?

[Wikipedia] 



Relocate

Relocate

[Josh Haner/The New York Times]

[Isle de Jean Charles, Louisiana]
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Accommodate/

[Mexico Beach, Florida/ Hurricane Michael]



Protect
[Maeslant Surge Barrier]



The design of these strategies must consider 
the key processes that drive coastal flooding:

1. Changing mean sea-levels
2. Extreme events



Terrestrial water
storage

Ice 
melting

Density 
changes

50% 37% 13%

Contributions over 1993-2010 that comprise 
trend of 3.0 ± 0.7 mm/yr

[Milne et al., 2009; IPCC AR5] 

Sources of global mean sea-level change



Local sea-level change is more complex



[Milne et al., 2009] 

Local sea-level change is more complex

Ocean–atmosphere
interaction

Terrestrial water
storage

Ice 
melting

Ve rtical land
motion

Ve rtical land
motion

Density 
changes

Ocean circulation

+ 
Gravity 
effects
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The rate and amount of future sea-level rise is uncertain



Antarctic ice sheet dominates future sea-level rise 
uncertainty after 2050 (sea-level rise “wildcard”)

 Component uncertainty in global mean sea-level rise [Kopp et al., 2014] 

 Climate forcing (i.e., climate policy)
 Landwater Storage
Glacier Ice Melt

Antarctic Ice Sheet
Greenland Ice Sheet
Thermal Expansion/ Density Change



What happens in Antarctica doesn’t stay in Antarctica…

[NY Times] 

Antarctic ice sheet (AIS) contribution to sea level is a rapidly 
evolving area of research, but remains deeply uncertain
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“Deeply uncertain”: No single, unambiguous probability 
distribution of future Antarctic behavior exists

***Applications using sea-level rise data (post-2050) should 
accommodate this ‘deep uncertainty’***



2. extreme coastal water levels
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Extreme coastal water level events at the Battery, New York City
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2.52.01.51.00.50.0

meters above average highest high tide 

1992 nor’easter

Irene

Extreme coastal water level events at the Battery, New York City



2.52.01.51.00.50.0

meters above average highest high tide 

1992 nor’easter

SandyIrene

Extreme coastal water level events at the Battery, New York City
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Extreme Coastal Water Level (m)

Long-term hourly records of sea level contain information 
about extreme water levels that can lead to flooding

(1920-2014)
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Extreme value theory used to fit a probability distribution to 
observed extreme sea levels

(1920-2014)
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Return periods of water levels of various heights can be estimated
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The most frequent events usually lead to minor damages   



High tide flooding
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Rare events can lead to catastrophic damage, if not well protected



Rare event flooding

LaGuardia Airport (Nov. 1950) 

South Ferry Subway (Oct. 2012) 
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What about  
sea-level rise? 🤔

[Rasmussen, Oppenheimer, and Kopp, in prep]
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Sea-level rise increases the frequency of all 
extreme water level events
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Sea-level rise increases the frequency of all 
extreme water level events
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Sea-level rise increases the frequency of all 
extreme water level events



101

100

10−1

10−2

10−3

10−4

0 1 2 3 4 5 6 7
Flood Height (m above MHHW)

Ex
pe

ct
ed

 E
ve

nt
s 

pe
r Y

ea
r

New York City, U.S.A. (2100)
Observed
Historic Flood Return Curve

N+SL50 1.5 °C

100-yr flood

20-yr flood

Extreme Coastal Water Level (m)

0.5 m of SLR

log-linear relationship! 

Sea-level rise increases the frequency of all 
extreme water level events

How to design to a ‘moving’ target?



A ‘flood allowance’ accommodates changing 
frequency of extreme water levels 
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Flood allowance (noun): the vertical 
required to keep the expected number of 
extreme coastal water level events 
constant under uncertain sea-level change

Engineering metric: “How high to build the levee?”
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Examples:

1. For a given point in time (“instantaneous”)
2. Over a given time period (“design life”)

Type of flood 
allowances:

Engineering metric: “How high to build the levee?”



Current exceedance probability of z*: f(z*) = 0.01
Known amount of local sea-level rise: ∆ = 0.5 m
Vertical adjustment to maintain f(z*): A(z*)

Height of extreme water level: z*= 1.9 m

the “allowance”

Flood allowance illustrated with basic math
Sea-level rise increases exceedance probability of z: f(z-∆) 
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Not all extreme water levels cause damages

Top of bulkhead is ~0.76 m 
above high tide line



Top of bulkhead is ~0.76 m 
above high tide line

Not all extreme water levels cause damages

So, really only a “flood” if surge 
is > 0.76 m above high tide line
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#1: How to incorporate deeply uncertain 
projections of AIS into a framework to 
design coastal flood defenses? 

Unknown amount of local sea-level rise: P(∆)

Objective: Create an ‘effective’ probability distribution P(∆) based 
on a subjective view of future Antarctic behavior



“Possibilistic” approaches can be used to express incertitude
e.g., a probability box, or ‘p-box’

The ‘p-box’ is defined by CDFs

‘True’ value of 2100 sea-level rise lies somewhere in-between the CDFs

[Baudrit et al., 2007; Le Cozannet et al., 2017]

How to choose CDF bounds?



Kopp et al. (2014) and Kopp et al. (2017) span 
the range of possible sea-level rise values

Relative to 2000
[Horton et al., 2018]

RCP 8.5

2100

Kopp et al. 2014 & 2017 frameworks identical, except 
for treatment of Antarctic ice melt



“Possibilistic” approaches can be used to express incertitude
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Probability of 1-m of local sea-level rise: 45% - 90%
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1. Maximum 2100 AIS contribution:

2. Likelihood of AIS collapse initiation: [0-1]

[25, 50, 100, 150, 175 cm]

Effective SLR probability distribution:

(i.e., where to cut off the tail of the AIS distribution)

“Possibilistic” approaches can be used to express incertitude

Two parameters:
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produces curves in 
between CDF bounds

[Rasmussen, Oppenheimer, and Kopp, in prep]
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Annual average loss

[Rasmussen, Oppenheimer, and Kopp, in prep]

Probability of water level z: f(z)

#2: How to account for damages in flood allowances?
Our answer: ’damage allowance’

Damage function: D(z)



D*(z) takes on different forms 
based on protection strategy
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D*(z) takes on different forms 
based on protection strategy

Unknown amount of local sea-level rise: P(∆)

Annual average loss

[Rasmussen, Oppenheimer, and Kopp, in prep]

Probability of water level z: f(z)

#2: How to account for damages in flood allowances?
Our answer: ’damage allowance’

Objective: find a “protected” damage function D*(z) that produces an 
AAL that is equal to a given target

Strategies: elevation, levee/dike, storm surge barrier, coastal retreat

Damage function: D(z)“Protected” damage function: D*(z)
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Example damage allowance calculation for a levee/dike
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Example damage allowance calculation for a levee/dike

“Protected” damage function: D*(z)
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[Rasmussen, Oppenheimer, and Kopp, in prep]

Example damage allowance calculation for a levee/dike
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[Rasmussen, Oppenheimer, and Kopp, in prep]Solve for A numerically

Example damage allowance calculation for a levee/dike
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[Rasmussen, Oppenheimer, and Kopp, in prep]

Damage allowance for levee/dike strongly depends on where 
the ‘tail’ of the AIS is cut off (i.e., AISmax)

95th percentile of sea-level rise

5th percentile of sea-level rise

Lines = full PDF of sea-level rise

Bars =

‘instantaneous’ allowance
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[Rasmussen, Oppenheimer, and Kopp, in prep]

Damage allowance for levee/dike also depends on 
perceived likelihood of AIS collapse (i.e., βc)

Collapse least likely

Collapse most likely
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Expected values driven by sea level extremes in tail
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‘Damage allowances’ are another tool for coastal risk 
manager’s or engineer’s tool box

Planners must be cognizant of deep uncertainty, and 
recognize when it should be taken into account (e.g., 

beyond 2050)

Subjective assessment of AIS stability necessary 
under deep uncertainty

Lessons learned:

There is value in reducing this uncertainty in terms 
of lower levee heights that are less expensive




