Parallel Acceleration of CALPUFF (Version 5.8 -
Level 070623) using MPICH-2

Final Report
Contract No. 11-760

Prepared for:

State of California Air Resources Board
Planning and Technical Support Division
PO Box 2815
Sacramento, CA 95812

Prepared by:

Principal Investigator: Michael J. Kleeman
Graduate Student Researcher: D.J. Rasmussen

Department of Civil and Environmental Engineering
University of California at Davis
One Shields Avenue
Davis, CA 95616
(530) 754-8323

June 17, 2013

Disclaimer

The statements and conclusions in this Report are those of the contractor and not
necessarily those of the California Air Resources Board. The mention of commercial
products, their source, or their use in connection with material reported herein is not
to be construed as actual or implied endorsement of such products.

1

ACKNOWLEDGEMENTS

The authors are grateful to the California Air Resources Board (Contract No. 11-760)
for support of this work.

This Report was submitted in fulfillment of ARB Contract No. 11-760, Improve-
ments to the Computational Efficiency of the CALPUFF Modeling System (Version
5.8—Level 070623) for Use in Regulatory Applications, under the sponsorship of the
California Air Resources Board. All work was completed as of June 30, 2013.

1l

TABLE OF CONTENTS

LIST OF FIGURES vi
ABSTRACT vii
EXECUTIVE SUMMARY viii
CHAPTER
I. Introduction oo 1
1.1 Introduction 1
1.2 The CALPUFF modeling system 3
1.3 The Message Passing Interface)
II. Profiling 7
2.1 Description of an 8-day test case scenario 7
2.2 Profiling results from test scenario 10
III. Parallelization approach 15
3.1 Implementing a 1-dimensional domain decomposition 15
3.2 Implementation of parallel I/O routines 17
3.2.1 Minimizing inter-process communication with paral-
lel output 17
3.2.2 Avoiding input file bottlenecks. 23
IV. Performance and scalability of parallel CALPUFF 25
4.1 Computational scaling of an 8-day test scenario with the par-
allel CALPUFF variant 25
4.2 Computational scaling of parallel CALPUFF as the number of
SOUTCES INCIeASeS . . .« v v v v v v v e e 28
4.3 Numerical accuracy of parallel CALPUFF 30
V. Recommended future improvements 37

v

5.1 Redundant “puft” calculations and machine memory limitations 38

VI. Conclusions 40
AUXILLARY MATERIAL oo, 40
A.1 Listing of Fortran code additions and modifications 42

A.2 CALPUFF test case control file 43

A.3 User Guide to Parallel CALPUFF 46
BIBILIOGRAPHY 49

Figure

2.1

2.2

2.3

24

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

5.1

Al

LIST OF FIGURES

CALPUFF and CALMET modeling domain 9
Profiling results L 11
CALPUFF code structure 12
Receptor sampling Fortran code 14
1-dimensional domain decomposition 17
Cascading send/ receive algorithm 21
Anatomy of parallel CALPUFF 24
Computational scaling of parallel CALPUFF 27
Performance for 100-1000 area sources 29
Performance for 1000-10000 area sources 30
Serial CALPUFF setup for many sources 32
Annual avg. PMj, concentrations (serial vs. parallel) 33
Numerical accuracy of parallel CALPUFF 34
Load imbalances o 38
Parallel I/O scaling 41

vi

ABSTRACT

The Message Passing Interface (MPI) library was used to construct a portable par-
allel variant of CALPUFF, a source-receptor puff dispersion model, to accelerate
numerical calculations. Gridded receptor sampling in the serial CALPUFF model
accounts for roughly 99% of the wall clock time during a typical simulation. The
parallel version of CALPUFF implements a 1-dimensional decomposition of all sam-
pling receptors across all active processor elements to distribute the workload over
multiple compute nodes. A parallel I/O method was also implemented to limit the
communication bottlenecks between processors during file writing operations that are
known to cause performance degradation. The capabilities of the parallel CALPUFF
model are demonstrated in a 90-day simulation with 10,000 area sources, which could
not be performed with the current U.S. Environmental Protection Agency (EPA)
approved version of serial CALPUFF (version 5.8—level 070623) and currently avail-
able computing hardware. Performance improvements between the parallel and serial
CALPUFF variants exceed a factor of 16 for simulations with 100 area sources and
using 52 processor elements. All results between serial and parallel CALPUFF are
found to be equivalent within numerical tolerances, a necessity for continued EPA
endorsements. If further performance improvements are needed, the use of a dynamic
domain decomposition is suggested to maximize CPU occupancy across all process
elements when receptors are not uniformly distributed throughout a domain and/or
when receptors are moving within a domain. The parallel CALPUFF model will be
a useful tool for regulatory modeling when the number of receptors and/or emission

sources is too great to complete a simulation in a reasonable amount of time using

the serial CALPUFF model.

vil

EXECUTIVE SUMMARY

Background.

The CALPUFF model tracks emissions from point sources through a simulation of
atmospheric dispersion and deposition. The model accounts for time-variation in the
emissions rate and meteorological conditions by separately tracking discrete subsets
(PUFFs) of the total emissions through the atmospheric simulation. CALPUFF has
been used previously to support a number of regulatory decisions worldwide. As the
size and complexity of the cutting edge science questions has expanded, the compu-
tational limits of CALPUFF have reduced the usefulness of the program. In order
to support future regulations, there is a need to optimize the CALPUFF modeling
system computational code such that performance is increased.

Methods.

A Fortran profiling tool was used to identify routines and algorithms in CALPUFF
that may be candidates for acceleration during representative simulations based on
data from past regulatory studies in California. Alternative parallel algorithms that
may improve computational efficiency were proposed and implemented. The scal-
ability and performance of the parallel CALPUFF model was tested using varying
numbers of emission sources and simulation times. The numerical accuracy of the
parallel CALPUFF model was analyzed using appropriate statistical metrics.

Results.

Using scenarios from past regulatory studies in California demonstrates that the sam-
pling of the puffs in the area of the receptors accounts for roughly 99% of the total
simulation time in the serial CALPUFF model. Using the MPICH-2 library, a 1-
dimensional decomposition of all receptors was implemented across all active pro-
cessor elements where each process element samples only at its assigned receptors.
Parallel output routines were also implemented to eliminate communication bottle-
necks that can degrade performance during file writing procedures. For an 8-day
simulation with 100 sources, the parallel CALPUFF model is >16 times faster than
the serial CALPUFF model with an efficiency of 35-75% when 2-56 processors are
used with standard Gbps networking. Furthermore, model simulations encompassing
tens of thousands of sources are possible with the parallel CALPUFF model; these
problems are not practical using the serial CALPUFF model with commodity hard-
ware at the present time. Concentrations predicted by the parallel CALPUFF model
are equivalent to the serial CALPUFF model within numerical tolerances.

viil

Conclusions.

A strategy for computational acceleration of CALPUFF using the MPICH-2 library
was proposed and implemented. The parallel CALPUFF model is >16 times faster
than the serial CALPUFF model under typical problem sizes. The parallel CALPUFF
model has the capability to simulate tens of thousands of emissions sources, which
is a problem size beyond the capabilities of the serial CALPUFF model at present
time. Predictions from the parallel CALPUFF model are equivalent to predictions
from the serial CALPUFF model within numerical tolerances. Future improvements
to the parallel CALPUFF model could include a dynamic domain decomposition
that would optimize the amount of work that each processor is assigned. The parallel
CALPUFF model should be a useful tool for regulatory modeling when the number of
receptors and /or emission sources is too great to complete a simulation in a reasonable
amount of time using the serial model variant.

X

CHAPTER I

Introduction

1.1 Introduction

Atmospheric reactive chemical transport models are mathematical representations of
pollutant dynamics commonly used on urban (710* km?) to regional (710° km?) scales
with horizontal resolutions of 4-36km to predict how chemical species concentrations
change in response to changes in emissions. These models, frequently referred to
as air quality models, are useful in determining and evaluating emissions abatement

strategies to comply with air quality standards.

The treatment of atmospheric phenomena in 3-dimentional reactive chemical trans-
port models has evolved considerably over past decades. As the understanding of
the underlying chemical and physical processes in the atmosphere continues to grow,
there has been a persistent desire to include increased detail in air quality models in
pursuit of accurate results that match observed behavior in the atmosphere. These
ambitions have proven to be a grand challenge [Levin, 1989] to modelers as compu-
tational constraints, notably central processing unit (CPU) speed, have placed limits
on certain air quality model parameterizations such as the spatial domain size and
horizontal and vertical resolution, simulation length, and the detail of the chemistry
and physics that can be included in calculations for simulations to proceed faster
than real time [Seinfeld, 1989]. Traditionally, these parameterizations and settings
have been simplified to keep calculations tractable. However, many model developers

agree that the use of massive parallel computing architecture is a promising solution

to meet the ever-growing computational demands of air quality modeling [Zlatev,

1995].

Previous studies have extensively shown that air quality models are well suited for
parallelization [Dabdub and Seinfeld, 1994; 1996; Elbern, 1997; Kumar et al., 1997;
Molnr Jr et al., 2010; Saylor and Fernandes, 1993|. Furthermore, the current gen-
eration of 3-dimensional gridded Eulerian air quality models (e.g. the Community
Multi-scale Air Quality model, or CMAQ); the Weather Research and Forecasting
Chemistry model, or WRF-Chem; the Comprehensive Air Quality Model with Exten-
sions, or CAMx) have all demonstrated performance benefits from utilizing massively

parallel computing resources [Emery et al., 2008; Grell et al., 2005; Tonse and Brown,

2007].

Gaussian dispersion models (e.g. the American Meteorological Society /EPA Regula-
tory Model Improvement Committee Model, or AERMOD; the California Puff model,
or CALPUFF) represent a subset of the processes that occur in the atmosphere with
emphasis placed on advection and diffusion of pollutants subject to simple or no
chemical reaction. As such, Gaussian dispersion models are much faster than full air
quality models that simulate hundreds to thousands of chemical reactions. Gaussian
dispersion models have generally not been rewritten as parallel programs to date.
Recently, a goods movement study carried out in California required the simulation
of several hundred emissions sources over one year using a Gaussian dispersion model
[CARB, 2008]. The computational burden of this problem was too large for a single
model application, and so a crude parallel approach was used that involved breaking
up the problem into discrete sub-problems that could each be simulated separately.
The additional overhead in this manual decomposition resulted in significant effort.

The use of parallelism in these popular air quality tools would significantly improve

the amount of detail (e.g. number of emission sources, number of sampling receptors)
that can be simulated in a modeling scheme under both a reasonable time allowance

and under CPU and memory limitations.

1.2 The CALPUFF modeling system

CALPUFF [Bennett et al., 2002; Scire et al., 2000a], is a multi-layer, multi-species,
non-steady-state puff dispersion model that is a component of the CALPUFF model-
ing system that also includes a meteorology pre-processing program, CALMET, and
a post-processing utility, CALPOST. The CALPUFF dispersion model simulates the
spatial (3-dimensional) and temporal effects of meteorology on pollutant dispersion,
chemical transformation, and removal processes. The chemical conversion mecha-
nism is quasi-linear and includes treatment for SO,, SO;~, NO,, HNOs;, NO3,
NHj3, PMyg, PMs 5, and inert pollutants. CALPUFF includes a resistance-based dry
deposition removal model for gases and particulate matter and uses both scavenging
coefficients and precipitation rates to calculate wet deposition. Emission sources may
be characterized as point, line, volume, and area sources. The model includes algo-
rithms for simulating the effects of sub-grid scale features such as complex terrain
and building downwash. Because of the non-steady state structure of CALPUFF,
causal effects and dynamic trajectories can be modeled producing results that are
often more realistic than other EPA approved regulatory models, such as AERMOD.
The EPA has recommended the use of CALPUFF for source-receptor distances of
50 km to several hundred kilometers with the regulatory default options selected in
the CALPUFF control file, but concedes that CALPUFF may be used on a case-by-
case basis given that certain criteria are met (see section 3.2 of U.S. EPA [2005]).
CALPUFF has been used in numerous studies including those that assess the health
effects of emissions reductions [Levy et al., 2002] and to estimate population exposure

to power plant effluence [Zhou et al., 2003]. As of December 2012, the EPA recom-

mends the use of CALPUFF version 5.8, level 070623.

CALPUFF produces hourly pollutant concentrations for each modeled species, along
with wet and dry deposition fluxes. Concentrations and fluxes are sampled at grid-
ded, non-gridded discrete, and sub-grid scale complex terrain receptors. CALPUFF
places no limitations on the maximum number of sources or receptors that can be
modeled, and these and other modeled parameters are set at the model compile time.
Drastically increasing both the number of emission sources and pollutant receptors
for a CALPUFF simulation presents a computational challenge that can be best met
with implementing parallel architecture that distributes the models work load over

several processing elements.

Previous published attempts to accelerate the computational performance of CALPUFF
have used parallel tools such as graphics processing units (GPUs) and the Open Mul-
tiprocessing (OpenMP) application program interface to accelerate sampling at only
CALPUFFs gridded receptors [Cremades et al., 2010; Suk-Hyun et al., 2011]. How-
ever, these attempts have either failed to produce consistent results between sequen-
tial and parallel variants [Cremades et al., 2010] or consistency between results was
not assessed [Suk-Hyun et al., 2011], a necessity to ensure that EPA model endorse-
ments remain. In this study, performance enhancement is explored by implementing
a distributed memory message passing interface (MPI)[Gropp et al., 1994] version
of CALPUFF with the goal of producing consistent results between both serial and

parallel model variants.

1.3 The Message Passing Interface

The Message Passing Interface - Chameleon 2 (MPICH2) library [Gropp, 2002] is an
implementation of the MPI standard (both MPI-1 and MPI-2). Like OpenMP!, the
MPICH2 library allows developers to take advantage of distributed memory across a
large number of CPUs. OpenMP is also known to be the least involved method to
increase performance for the model developer as the compiler will often solely deter-
mine where to perform parallel calculations. With MPICH2, the programmer must
decide where to insert the proper subroutines in the code for communication between
processing elements. Although this typically makes parallel model development more
involved than OpenMP, it allows for greater control over the parallel architecture
compared to OpenMP. While start-up hardware costs may be much less, model ac-
celeration using GPUs is the most involved performance improvement option due to

the porting of sometimes lengthy code streams to run on the Compute Unified Device

Architecture (CUDA) developed by NVIDIA®.

The MPICH2 library is designed in a modular, user-friendly format, and has proven to
be a powerful, scalable, and portable performance optimization solution in a variety
of science and engineering applications [Jin et al., 2011]. Additionally, the MPICH2
library includes a Fortran interface that pairs well with the CALPUFF modeling sys-
tem that is written with Fortran77. This eliminates any need to meticulously port
the CALPUFF code to take advantage of the MPICH2 library which is composed in
the C language. In this report, a methodology is presented for improved computa-
tional performance of the EPA recommended version of CALPUFF (version 5.8—level
070623), a multi-layer, multi-species, non-steady-state puff dispersion model, through
the implementation of a parallel calculation framework with the MPICH2 library, a

message passing interface.

"'Website for OpenMP tools, http://www.openmp.org

In section 2 of this report we introduce a test scenario, profile this simulation, discuss
profiling results from the sequential variant of CALPUFF and identify performance
bottlenecks that may be candidates for parallelization. We outline and implement a
strategy for increased computational performance in section 3. In section 4, we ap-
ply our parallel CALPUFF variant to a test case scenario, compare profiling results
between the serial and parallel variants, and verify consistency in resultant pollutant
concentrations. In section 5 we offer suggestions for future improvement in the com-
putational performance of the parallel variant of CALPUFF. Finally, we conclude our

findings in section 6.

CHAPTER II

Profiling

In order to identify performance hurdles within the CALPUFF modeling structure,
a dynamic profiling analysis was performed with the PGPROF®) profiler. The
PGPROF®) profiler gathers timing and calling information from the subroutines and
functions from the model as it runs. To run the PGPROF®) profiler, the model code
must be specially compiled with certain profiling flags. Although the data collection
during the profiling may add some overhead to the model execution, it is anticipated
that the objective of finding the most computationally intensive routines will likely
not be hindered due to the added overhead mostly affecting infrequently used func-
tions and routines and the long duration of the profiling time (Section 2.1). It is
important to note that profiling results will significantly vary with the manner in

which the model is configured to run in the accompanying control file.

2.1 Description of an 8-day test case scenario

In this study, we use a moderately-sized test case simulation with CALPUFF to
demonstrate proof-of-concept. Our test simulation uses 3-dimensional gridded hourly
weather fields (e.g. wind, temperature), along with 2-dimensional derived hourly
fields and variables (e.g. mixing depth, Monin-Obukov length, precipitation rate)
from January 1 to December 31 2002 that are prepared by the CALPUFF modeling
system meteorology pre-processor, CALMET (v. 5.53a) [Scire et al., 2000b]. For
the CALMET simulation, we use a 1092 km x 1092 km model domain (figure 2.1)

at 4 km x 4 km horizontal resolution with 12 vertical layers specified from the sur-
face (0 m) up to a height of 5 km. This domain is based on Lambert Conformal
Conic projection and has been used by ARB for previous modeling simulations [e.g.
CARB, 2008]. We use 3-dimensional prognostic meteorology generated over the west-
ern US by the fifth-generation Penn State/NCAR mesoscale model (MM5) [Grell et
al., 1995], and, when available, use over-land surface (10-m) meteorological data from
279 observation stations. The horizontal resolution of the MM5 prognostic data was
12 km x 12 km. Gridded terrain elevation data are derived from 3-arc second digital
elevation models by the United Stated Geological Survey and have a resolution of 90
m x 90 m. We use 14 distinct land-use categories derived from USGS gridded data
sets. (For CALMET model control file, see Table 2 of Appendix E1, CARB, 2008)

CALPUFF is used to simulate pollutant dispersion and removal over an 8-day simula-
tion (04/01,/2002 00:00 PST to 04/08/2002 23:00 PST) using diesel and diesel-electric
powered ocean-going freight vessel emissions data from 2005 represented as 100 area
sources [CARB, 2008]. The domain used by the CALPUFF simulation was identi-
cal to that of the CALMET domain (figure. 2.1). At the beginning of each hourly
time-step, SOy, NO,, PM; (in this simulation representing diesel particulate mat-
ter), and N Hj are emitted from each area source as puffs. Pollutant concentrations
were sampled each hour at all gridded receptors on a 273 receptor x 273 receptor
grid (74,529 total receptors); sampling in this test scenario was not done at discrete,
non-gridded or complex terrain receptors. We model SO, NO,, HNO3, and N Hy
gas chemistry and sulfate, nitrate and PM;, aerosol chemistry and physics with the
MESOPUFF II chemical mechanism [Scire et al., 1984a; b]. Both wet and dry de-
position of particles and gases are modeled, however aqueous-phase transformation
of SOy and NO, is not modeled. The ISC-type terrain adjustment method is used

and partial plume penetration of elevated inversions is not allowed. The line printer

LC Y (km)

-400 -300 -200 -100 O 100 200 300 400 500

LC X (km)

Figure 2.1: The extent of the CALMET and CALPUFF modeling domain used in
this study showing terrain elevation (m) derived from 3-arc second digital
elevation models by the United Stated Geological Survey with a resolution
of 90 m x 90 m. Lambert Conic Conformal x- and y- coordinates (km) are
relative to the domain origin at 37°N 120.5°W. Reprinted with permission
from the California Air Resources Board.

output option was turned off to improve model performance. The remaining settings
in the CALPUFF control file were configured with the EPA recommended options
(see CALPUFF control file in auxiliary material). This 100 source, 8-day test case is
chosen because it is computational demanding for the serial CALPUFF variant (70.5
hrs. to simulate 1 day), and we hypothesize that a longer profiling duration will yield
more accurate timing information from the models subroutines. A variety of weather
conditions were present over the modeling domain during this 8-day episode that may

make this an interesting, roughly week-long, testing period.

2.2 Profiling results from test scenario

The initial profiling results performed with PGPROF®) on an Intel® Core™ 2 Quad
Q6600 processor (SMB Cache, 2.40 GHz, 1066 MHz FSB) with 4GB DDR3 SDRAM?
revealed that the calculations within the subroutine CALCPF accounted for around
99% of the total simulation time (figure 2.2).

Previous studies have profiled the sequential CALPUFF code and have additionally
concluded that subroutine CALCPF is the limiting performance hurdle for simulations
with the EPA recommended default settings selected in the control file [Cremades et
al., 2010; Suk-Hyun et al., 2011]. A brief analysis of the CALPUFF modeling struc-
ture (fig. 2.3a) revealed that the subroutine CALCPF lies within the subroutine
COMP, a subroutine that encompasses nearly all of the models calculations during
each hourly time step. The outer-most loop in the subroutine COMP iterates over
each hour of the simulation (fig. 2.3b). For each hour, a loop iterates through each
active puff on the computational grid and performs calculations for dispersion, depo-
sition, and chemistry. Further imbedded within the puff loop is subroutine CALCPF,

in which a loop is performed over receptors, of gridded, non-gridded discrete, or sub-

ZNote: All testing and profiling in this report was performed on a 400-node Linux Beowulf
cluster maintained by, and located at, the University of California, Davis. Machine specifications
are provided in this report when performance results are given.

10

Total Time
41,188.56 sec.

v

MAIN

0.2790 sec - 0%

COMP
12.8259 sec - 0%

CALCPF
7,144.92 sec- 17%

PUFRECS
5,184.97 sec - 13%

SIGTY
8,189.1 sec - 20%

SETCSIG
1,866.04 sec - 5%

A

SLGFRAC
1,159.2 sec - 3%

o CTADJ
824.749 sec - 2%

PFSAMP
3,416.53 sec - 8%

v

PFSCRN
1,433.76 sec - 3%

A

ASDF
2,421.8 sec - 6%

v

ERFDIF
4,509.44 sec - 11%

RDMET
0.0977 sec - 0%

ERFC
—» 3,128.42 sec - 8%

RDR2D
274.818 sec - 1%

v

ERF
1,371.42 sec - 3%

A 4

Figure 2.2: A subroutine call tree showing profiling results from an 8-day CALPUFF
simulation with 100 area sources with pollutants sampled hourly at 74,529
gridded receptors. Subroutines are only shown if they, or if the subrou-
tines within, contribute at least 1% of the total calculation time. Results
obtained with the PGPROF®) profiler.

11

grid scale complex-terrain variety (CTGS) (depending on model setup options in the
control file), to sample information about the concentration and deposition fluxes of

each species modeled.

a.) b.)
MAIN COMP
Hour loop
DO 1000 NN=1, IARLG
> SETUP

Puff loop
DO 900 II=1, NPUFFS

> COMP
CALCPF

> FIN

Gridded receptor sampling loop
DO 100 ISAMP =1L, IR
DO 100 JSAMP = JB, JT

100 CONTINUE

—— 900 CONTINUE
—— 1000 CONTINUE

Figure 2.3: a.) The three principal CALPUFF subroutines within the main program
body, SETUP, COMP, and FIN; b.) the loop structure within the sub-
routine COMP that includes the hour and puff loops, as well as the call to
subroutine CALCPF and its associated principal loops over all gridded
(shown), non-gridded discrete(not shown), and sub-grid scale complex-
terrain receptors(not shown).

Closer inspection of the CALCPF code reveals that gridded, discrete, and CTGS
receptors are only sampled if they meet certain requirements that render them po-

tentially impacted by the current puff iterate in the puff loop. There is an additional

12

screening procedure for gridded receptors that further eliminates the need to iterate
over all gridded receptors for each active puff. Instead of sampling over all 74,529
receptors in the CA domain, the impacted receptors are identified and then sampled

from limits il to ir and jb to jt (See Fortran code in figure 2.4a).

c variables defined:

¢ nxsam - number of gridded sampling receptors in x-direction

¢ nysam - number of gridded sampling receptors in y-direction

¢ jt - location of the top boundary of the grid affected by the puff

¢ jb - location of the bottom boundary of the grid affected by the puff
¢ 11 - location of the left boundary of the grid affected by the puff

¢ ir - location of the right boundary of the grid affected by the puff

c ——- Loop over gridded receptors (sequential CALPUFF v5.8)
do 100 irsamp=il,ir
xr=float (isamp)
do 100 jsamp=jb,jt

yr=float (jsamp)

c variables defined:
c mysamt - top boundary of the l-dimensional domain decomposition

¢ mysamb - bottom boundary of the l1-dimensional domain decomposition

13

c —-—- Loop over gridded receptors (parallel CALPUFF)
if (max(jb,mysamb) .GT.min(jt,mysamt)) goto 101
do 100 irsamp=il,ir
xr=float (isamp)
do 100 jsamp=max(jb,mysamb) ,min(jt,mysamt)

yr=float (jsamp)

Figure 2.4: a) from CALPUFF version 5.8 —level 070623; Fortran code that deter-
mines if current puff lies over assigned receptors and code that loops over
impacted gridded receptors; b) from the parallel CALPUFF variant; For-
tran code that determines if current puff lies over assigned receptors and
code that determines sampling limits if the latter condition is valid.

14

CHAPTER III

Parallelization approach

3.1 Implementing a 1-dimensional domain decomposition

Previous studies investigating performance improvements in the dynamic modules of
air quality models have proposed differing schemes for disseminating computational
workloads amongst processor elements (e.g. [Dabdub and Manohar, 1997; Elbern,
1997; Kumar et al., 1997]). One common approach is to have the root or master
process distribute the computational work load to all processors using a predefined 1-
or 2- dimensional decomposition of the working domain where each processor element
is assigned tasks or calculations to perform. The number of the resultant decomposi-
tions is often dependent upon the user-specified number of active processing elements.
When using a predefined decomposition, the user will benefit in three ways: (1) the
user will know the processing element that corresponds to each taskuseful knowledge
when debugging, (2) the user can choose a decomposition where the computational
load will be distributed evenly, (3) and the user can select a decomposition where com-
munication overhead is reduced. With each processing element performing calculation
for a fraction of the domain, rather than one processor performing all calculations,

improvements in computational performance should be realized.

As found in section 2, the subroutine CALCPF, and functions and routines within,
are solely responsible for around 99% of the computational load and offers an ideal op-
portunity to improve model performance while maintaining consistent model results.

To achieve this goal, we propose a 1-dimensional decomposition of all active gridded,

15

non-gridded discrete, and complex terrain sampling receptors across N-active proces-
sors. Figure 3.1 diagrams this plan for the test scenario used in this study (section
2.1) where 1-dimensional gridded sampling receptor decomposition is implemented
(where each model grid cell is a sampling receptor) using a 273 receptor x 273 re-
ceptor grid that has been divided into four, approximately even, discrete partitions,
where each of the four active processors is to sample only the gridded receptors that

it has been assigned.

At the start of a parallel CALPUFF simulation, each PE determines the total number
of active PEs and then attempts to evenly divide the rows of the sampling receptor
domain and the number of discrete receptors by the total number of active PEs. If
the number of rows in the sampling receptor domain, or the number of discrete re-
ceptors, is not evenly divisible by the number of active PEs, then the root process is
assigned the remaining balance of the rows or discrete receptors. Each process uses
a common block (mpidecomp) to store the upper and lower limit of their assigned

gridded receptor rows (mysamb and mysamt, respectively) and discrete receptors.

When gridded receptor sampling is used, the parallel code in subroutine CALCPF
screens for puffs to sample over the processors assigned receptors. If the algorithm
finds a puff over its receptors, it will sample (See Fortran code in fig. 2.4b and fig.
3.1). In this approach, all processors will perform the same numerical dispersion,
deposition, and chemistry calculations for all active puffs, regardless of the puffs posi-
tion on the grid. This redundancy may seem computationally inefficient, but with the
model settings used in this studys test case, our profiling results (Section 2.2) reveal
that non-receptor sampling calculations account for less than 2% of total simulation
time. We hypothesize that these redundant calculations can likely occur much faster

than if parallelization is implemented because of the known performance penalties

16

that are associated with communication bandwidth latency, or the start-up time,
needed to send and receive messages between processing elements. After each hourly
time-step, after all receptors have been sampled for all species and all puffs, species
concentrations and wet and dry deposition fluxes from each process are prepared to

be written to the disk in binary format.

Gridded receptor domain

(1,273) (273,273)
3 il jt) (rjt

(1,mysamt) [~ -------~(273,mysamt)
2

R T) —— Lo) 973 mysamb)
1

Rank =0
(1,1) (273,1)

Figure 3.1: A schematic showing a receptor grid of dimension 273 receptors x 273
receptors decomposed 1-dimensionally across four processors, rank 0
through 3. Limits of the receptor grid for the third process element
(rank 2) are shown in bold. A hypothetical puff and the associated limits
(il1,ir and jb, jt) for the puffs affected receptors (see code in fig. 2.4a)
are shown in the northeast corner of the 273 receptor x 273 receptor grid.

3.2 Implementation of parallel I/O routines

3.2.1 Minimizing inter-process communication with parallel output

To minimize or eliminate the need for further communication between processes after

the domain decompositions have been assigned, we further propose the implementa-

17

tion of a parallel output routine where each PE writes its concentrations and fluxes to
the disk, rather than passing the data back to the root PE for writing. The EPA rec-
ommended version of CALPUFF includes the capability to produce around a dozen
output files. However, only writing the species concentrations and wet and dry fluxes
require parallel output capability as they are measured at all receptors, which we
decompose across all active PEs; all other output files (e.g. restart file, visibility, fog
plume, 2-dimensional temperature and density) are redundantly generated by each PE
and do not require parallel output. The task of implementing parallel output routines
in CALPUFF is largely constrained by the format of the output files produced by the
serial version of CALPUFF which are designed to be compatible with the companion
CALPUFF post-processing tool, CALPOST (version 6.221—Ilevel 082724). All binary
output files produced by the parallel variant of CALPUFF must meet the CALPOST

formatting requirements.

We use an explicit offset file pointer method (MPI_FILE_WRITE_AT) for parallel out-
put that was revealed in testing to be slightly faster than using a shared file pointer
method (MPI_LFILE_-WRITE) when writing to a local hard disk (Auxiliary figure A.1).
Poor write speed performance was experienced with the explicit file pointer method
when writing to a redundant array of inexpensive disks (RAID) that did not occur

with the shared file pointer method.

The explicit offset file pointer method, by definition, explicitly specifies where each
PE should write in the output file. We track the file pointer location using an 8-byte
integer variable, mpifilebytes, to hold the active write location (bytes), and we up-
date this variable each time writing to the disk occurs. We use an 8-byte integer type
because the size of CALPUFF binary output file in bytes may exceed the upper limit

of a 4-byte unsigned integer value (232-1 or "4.294x10°). We simulate Fortran block

18

writing with the MPI parallel output functions in each instance that data is written
to disk by first writing the size of the data to be written (in bytes), then writing the

data, and then again writing the size of the data that was written (in bytes).

Before concentrations and wet and dry fluxes are sent to the disk for the first time,
several headers that contain information about the control file settings used in the
CALPUFF simulation are written at the beginning of each binary output file. For
simplicity, we conscript the root PE to write these and all other headers and variables.
At each hour, both the concentration and flux receptors are sampled in parallel and
then prepared to be written to the disk.
Parallelizing data compression routines.

Before concentrations and fluxes are written to the disk, CALPUFF uses a data
compression routine to reduce size of the output file. The compression algorithm in
CALPUFF packs the concentration and flux fields by replacing sequences of zero val-
ues with negative floating point numbers whose absolute value indicates the number
of consecutive zeros that have been substituted for the single negative floating point

number. For instance:
000O01.3E-03 5.2E-03 2.3E-03 0 O

becomes
-4.0001 1.3E-03 5.2E-03 2.3E-03 -2.0001

Because each process only has data from their assigned receptors, all compressed fields
must be properly stitched together in the parallel variant of CALPUFF to obtain the
full species concentration and deposition fields. To properly reconstruct the global
fields, the end points of each compressed field must be communicated so that zero
counts may be updated, if necessary. For instance, if compressed field 1 ends with

a zero count of 2 (represented as -2.0001) and compressed field 2 begins with a zero

19

count of 6 (represented as -6.0001), the zero counts must be added (represented as

-8.0002) by the PE assigned to field 2. (see below).

Field 1 before updating end point:

-4.0001 1.3E-03 5.2E-03 2.3E-03 -2.0001
Field 2 before updating end point:

-6.0001 4.3E-03 3.3E-03 2.1E-03 -2.0001
Field 1 after updating end point:

-4.0001 1.3E-03 5.2E-03 2.3E-03

Field 2 after updating end point:

-8.0002 4.3E-03 3.3E-03 2.1E-03 -2.0001

The global fields are properly stitched together when each PE writes its local field
to the disk (see Section 3.4). The final form of the entire compressed field must not
have consecutive zero counts as they will prohibit proper reading of the simulation
results in CALPOST. To facilitate this task of exchanging and updating zero counts
between PEs, we use an asynchronous, cascading send/ receive algorithm for all PEs
to exchange all concentration and flux field endpoints, with the exception of the first

and last PE which exchange just one end point, in subroutine comprs.

An attempt to use a collective communication operation (MPI_ALL_GATHER) for
the task of exchanging array end points elicited significant network strain using older
cluster hardware that would sometimes cause the communication operations to fail
when a large number of clustered nodes were used. The cascading send/ receive algo-
rithm has demonstrated good performance when using a larger number of clustered
nodes. During testing, both the collective operation and the cascading send/ receive

methods were revealed to take approximately the same amount of time to execute.

20

’—Rank 0 send rightl ’ﬁ ’ﬁ

myrank = 0 1 2 3
T—Rank 1 send IeftJ T ‘ T ‘
1. All processes send start and end points. 2. All processes receive start and end points.

‘ If myrank # last rank ‘ ‘ If myrank = 0

RECEIVE END PT. FROM NEIGHBOR

SEND END PT. TO NEIGHBOR TO MY RIGHT TO MY RIGHT

If myrank =0 If myrank = last rank

RECEIVE START PT. FROM

SEND START PT. TO NEIGHBOR TO MY LEFT NEIGHBOR TO MY LEFT

else

RECEIVE START AND END PTS. FROM
NEIGHBORS TO MY RIGHT AND LEFT

Figure 3.2: Visual depiction of the cascading send/ receive algorithm used in parallel
CALPUFF used to exchange array start and end points.

3.2.1.1 Writing compressed concentration and flux fields in parallel

In addition to updating the end points of each PEs local concentration and flux fields,
the total number of non-zero and zero values for all global fields must be calculated
in subroutine comprs. This value is written to disk by the root PE immediately be-
fore all other PEs write their concentration and flux fields. CALPOST uses the total
number of non-zero and zero values in the algorithm that un-packs the compressed
concentration and flux fields. We implement a second cascading send /receive algo-
rithm in subroutine comprs to calculate this global value with the root PE (rank =
0) initiating the process by sending its total number of non-zero and zero values to
the next PE (rank = 1) where this PE will add its total number of non-zero and
zero values to the root PEs count and then send it to the next PE. The sending and
receiving continues until all processes have received the counts from their neighbors

and have added their counts to the running global sum. The last PE to receive the

21

count will update its own count and then send the global count back to the root

process so that it can write it to disk before all PEs write their local fields.

The running global sum that passes between PEs is also used to assign the file pointer
location for each process in preparation for writing out the concentration and flux
fields. Extra bytes are added to each processors file pointer location to account for
the headers that are written by the root process ahead of the global fields. Before
the second cascading send/ receive algorithm, the root PE will pack both the file
pointer location and its local count of zero and non-zero concentrations or fluxes into

a variable for sending.

Initiate receive all processes wait to get package

if myrank.ne.O

RECEIVE FILE POINTER LOCATION AND LOCAL SUM FROM PROC. TO MY LEFT
global_sum = mysum + received sum

file ptr. loc. = received file pointer loc. + header offset
myoffset = received sum

endif
Initiate send

if myrank.ne.last rank
if myrank = 0

myoffset = 0

Pkg(1) = mysum
Pkg(2) = file pointer location
else

Pkg(1)

mysum

22

Pkg(2) = received file pointer location
endif
SEND PACKAGE TO PROCESS TO MY RIGHT

endif
Last processor sends global sum to root process to write to disk

if myrank.ne.last rank

global_sum = mysum

SEND GLOBAL SUM TO ROOT PROCESS
elseif myrank = 0O

RECEIVE GLOBAL SUM

endif

After each PE knows where to write its portion of the global field in the binary file,
the process of writing the concentration and flux fields to disk finally occurs. All
PEs enter subroutine wrdatc and write their portion of the global field using the file
pointer location that is calculated from the running sum of the number of zero and
non-zero concentrations in each PEs local field. After writing their fields to disk, the
PEs return to sample the concentration and flux fields at receptors for the next hour

that has been integrated and then they repeat the parallel output process.

3.2.2 Avoiding input file bottlenecks.

At the start of each hour, each PE needs to read meteorological data from the same file
at appoximately the same time. When several PEs are in use, bottlenecks can occur
during this process, degrading runtime performance. Here, using the MPI_BROADCAST
function, the root process broadcasts meteorological variables to all active PEs, lim-
iting the number of processes accessing the decreasing the bandwidth required by the
file system. This process, along with a summary of the architecture of the parallel

CALPUFF variant, is presented in figure 3.3.

23

All processes send and
receive data array endpoints

Process 0 reads and from their neighbor(s) and file

broadcasts meteorology o ot i P e o A only hei receptors

to all processes processes

™ 3 > 3 ——»{ Data compression Writes output
' 1

Ho 2 —» 2 —»{ Data compression » Writes output
) 1

] 1 > 1 ——»{ Data compression Writes output
] 1

— Rank =0 —» Rank =0 —»{ Data compression » Writes output

MET.DAT

Figure 3.3: Anatomy of parallel CALPUFF gridded receptor sampling and parallel
output implementation with a 1-dimensional gridded receptor decompo-
sition across four processor elements.

24

CHAPTER IV

Performance and scalability of parallel CALPUFF

We perform simulations with both CALPUFF (v5.8) and the parallel CALPUFF
models to quantify increases in computational performance, assess scalability, and
to assure consistent results between variants. We perform the test case simulation
(Section 2.1) using several clustered workstations using the Linux operating system.
Running together, these machines create a powerful and flexible distributed memory
parallel computer (Linux “Beowulf” system) that is suitable for large air quality
modeling calculations. Each node in this analysis, unless otherwise noted, uses an
Intel® Core™2 Quad Q6600 processors (SMB Cache, 2.40 GHz, 1066 MHz FSB)
with 4GB DDR3 SDRAM. The network connecting each node was standard Gbps.
We vary the number of active PEs to assess computational scaling and efficiency. In
addition to the analyzing the performance improvements of running an 8-day test
case simulation (Section 2.1) with the parallel CALPUFF variant, we perform 90-day
and yearlong test scenarios to gauge resultant speed-ups for bigger problem sizes (i.e.

more emissions sources and longer integration times).

4.1 Computational scaling of an 8-day test scenario with the

parallel CALPUFF variant

We perform the 8-day simulation (outlined in section 2.1) using the parallel CALPUFF
model to asses speeds-ups and scalability. Amdahl’s Law relates the expected speed-
up to the number of processing elements used and the fraction of the code that can

be parallelized:

25

1

e

(4.1)

Where S is the expected speed-up factor, P is the fraction of the code that is affected

by parallelization, and N is the number of processor cores used.

Our profiling results reveal that around 99% of the sequential CALPUFF code in our
8-day test simulation is confined to the CALCPF subroutine, which we parallelize in
section 3.1. Due to this fact, we make the approximation that 99% of the CALPUFF
model can be parallelized, and Amdahl’s law simplifies to just a function of the

number of processor cores used:

1

= Gy

(4.2)

In the upper limit (N—o00), Ahmdahl’s law theoretically predicts a maximum speed-
up of 100. However, to due to overhead associated with communication between
processor elements and load imbalances (Section 5), this and other theoretical pre-

dictions by Ahmdahl’s law are rarely ever fully realized.

Figure 4.1 diagrams the computational scaling for this simulation, indicating the wall
clock time (hrs.) to complete the test scenario with 100 area sources as the number
of active processors is increased. Additionally plotted is the ideal behavior predicted

by Amdahls Law and the computational efficiency (%) defined as:

B Tot. Serial Time 1
N Num. PEs Tot. Parallel Time

0 (4.3)

We find that computational efficiency drops from 100% with one PE to just above
60% when 4 PEs are used. However, efficiency remains at or just above 50% using

between 12 and 52 PEs. Realized speed-ups closely follow the trend in ideal behavior

26

predicted by Amdahl’s law until the number of PEs is greater than 52 and performance
degrades. Using 52 PEs, we find that the parallel CALPUFF variant completes the
8-day simulation with 100 area sources over 30 times faster than the serial variant.
The optimal number of conscripted PEs will vary depending on the size and type of

the problem performed by parallel CALPUFF.

2 '. T T T T T T T 1
\ == Simulation Time
1.75F 1\ - B =|deal Time 10.875
1 - @ - Efficiency
15F 0.75
 1.25¢ 0.625 ¢
2)
3 >
< 1t 05 ¢
2 °
F 075} 0.375 i1
0.5F 0.25
0.25F 0.125
o 0

Number of processors

Figure 4.1: Computational scaling of the parallel CALPUFF variant for an 8-day
simulation with 100 area sources; a) computation (wall clock) time (hrs.)
versus total number of processor cores (solid black line with square mark-
ers); b) as for a) but with ideal computation (wall clock) time (hrs.)
predicted by Amdahl’s Law (dashed black line with square markers); c)
as for a) but with computational efficiency (%) versus total number of
processor cores (dashed red line with circle markers). Simulations were
performed using the settings specified in section 2 and the hardware used
was Intel® Core™2 Quad Q6600 processor (8MB Cache, 2.40 GHz, 1066
MHz FSB) with 4GB DDR3 SDRAM. The time to complete the simu-
lation with the sequential model variant was 3.97 hrs. (data point not
shown on figure).

27

4.2 Computational scaling of parallel CALPUFF as the num-

ber of sources increases

We find that increases in performance between the serial and parallel CALPUFF
variants are highly dependent upon the number of specified emission sources and the
length of the simulation time. Although we find a speed up of around 16 from with
parallel CALPUFF using 52 clustered nodes for the test simulation specified in sec-
tion 2.1, improvements in performance will likely be greater for larger problem sizes

(i.e. thousands of sources, thousands of receptors, long time integrations).

Using the same 8-day simulation period (04/01/2002 00:00 PST to 04/08,/2002 23:00
PST) and 10 clustered nodes, we increase the number of sources to assess the scaling
for “larger problem sizes”. Figure 4.2 shows the time to complete the 8-day sim-
ulation using between 100 and 1000 area sources with an Intel® Core™ i5-3570T
(6MB Cache, up to 3.30 GHz) quad-core processors and 8GB DDR3 SDRAM. Figure
4.3 additionally shows profiling results from parallel CALPUFF, but for a 90-day
simulation (04/01/2002 00:00 PST to 06/29/2002 23:00 PST) using between 1000
and 10,000 area sources. An additional run of 20,000 area sources was started and
simulated two weeks out of 90 days before being stopped due to shifting computing
resource priorities on the University of California - Davis Beowulf cluster during the
2012 summer. We feel that a yearlong, simulation involving 20,000 area sources or
more, is possible with the parallel variant given that the conscripted computing hard-
ware has at least 8GB of memory to hold several million puffs on the grid at once.
Simulations involving tens of thousands of area sources and receptors were all but
impractical for the serial variant of CALPUFF, but now may be possible with the
parallel model. Because of this, speed-up calculations cannot be practically deter-

mined and therefore are not presented.

28

In both profiling exercises examining the scalability of the parallel variant, input data
were read from an Apache™ Hadoop®) distributed file system (HDEFS). Speed-ups
of a factor of two were observed with parallel CALPUFF when the input data were
instead read from the network file system (NFS). Therefore the presented results
in figures 4.2 and 4.3 are likely a lower end estimates. Computational scaling for
simulations using several thousands of sources was not investigated due to computing

resource availability during the summer of 2012.

1.8

1.6 8-day simulation using 40 processor elements

—
~
T

-
N
T

©
o
T

Wall clock time (hours)

o
[o)]
T

o
N

= Parallel CALPUFF
1 1 1 T T T J

0.2 : :
100 200 300 400 500 600 700 800 900 1000
Number of area sources

Figure 4.2: Performance of parallel CALPUFF (hours) as a function of the total num-
ber of area sources for an 8-day simulation ran on 10 clustered nodes (40
processor elements) with an Intel® Core™ i5-3570T (6MB Cache, up
to 3.30 GHz) quad-core processor and 8GB DDR3 SDRAM. Input data
were read from an Apache™ Hadoop®) distributed file system (HDFS).
Speed-ups of a factor of two were observed with parallel CALPUFF when
the input data were instead read from the network file system (NFS).
Profiling using the serial CALPUFF variant was not attempted.

29

120

90-day simulation using 40 processor elements

Wall clock time (hours)

—— Parallel CALPUFF

0 1 1 1 1 1 1 1 1 J
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of area sources

Figure 4.3: Performance of parallel CALPUFF (hours) as a function of the total num-
ber of area sources for an 90-day simulation ran on 10 clustered nodes (40
processor elements) with an Intel® Core™ i5-3570T (6MB Cache, up
to 3.30 GHz) quad-core processor and 8GB DDR3 SDRAM. Input data
were read from an Apache™ Hadoop®) distributed file system (HDFS).
Speed-ups of a factor of two were observed with parallel CALPUFF when
the input data were instead read from the network file system (NFS).
Profiling using the serial CALPUFF variant was not attempted.

4.3 Numerical accuracy of parallel CALPUFF

Numerical equivalence in the results for this exercise is paramount for current EPA
endorsements to remain, and for this project we adopt the objective of upholding this
standard. Previous published attempts to accelerate CALPUFF have either failed to
produce consistent results between serial and parallel variants [Cremades et al., 2010]

or consistency was not explored [Suk-Hyun et al., 2011].

In this section, we present an additional test case ran with both the serial and paral-

30

lel CALPUFF variants consisting of a year-long run with 698 area sources to verify
numerical accuracy for a moderately sized application that can be simulated using
both models in a reasonable amount of wall clock time to allow for a critical evalu-
ation of the numerical results. We present a companion statistical assessment of the
numerical accuracy of the parallel model variant relative to the results from the serial
model using appropriate metrics. As presented in section 2.1, we model emissions
from diesel and diesel-electric powered ocean-going freight vessel emissions off the
California Coast. We do not output wet and dry deposition fluxes from the model

due to the associated performance penalties.

Concentration fields from the serial variant were generated by splitting up the area
sources into 7 groups of 98 or 100 area sources and then simultaneously running each
group of emissions sources with the sequential version of the CALPUFF model on
seven individual PEs in a “pseudo-parallel” approach. Results from each of the seven
simulations were then added together using the CALPUFF system utility CALSUM?.
This strategy has been a popular method implemented by users of the traditional
serial CALPUFF model when dealing with a large number of sources as it would
likely take several weeks to complete the simulation if one PE was assigned all 698
sources. We use 15 clustered quad core nodes to perform the simulation with paral-
lel CALPUFF to perform the same simulation scenario. A schematic showing both

modeling approaches and simulation times is shown in figure 4.4.

The simulation time given for the sequentially coded variant (fig. 4.4) is the longest
amount of time taken to simulate one of the seven concentration fields using one
of the seven individual processing elements that is assigned a fraction of the 698

total sources. It should be noted that the simulations performed with the serial

3CALSUM source code available at: http://www.src.com/calpuff/download/mod6_codes.htm

31

model were performed on older computing hardware and therefore does not elicit a
direct comparison to the time taken for the parallel variant to simulate the same
scenario using 15 quad core clustered nodes. As such, we urge caution in judging the
performance of the parallel variant solely from this exercise. Additional simulations

are needed to accurately gauge speed-ups.

CALPUFF version 5.8 Parallel CALPUFF

698 Area Sources
100 Area Sources | | 100 Area Sources | | 100 Area Sources | | 100 Area Sources | | 100 Area Sources | | 100 Area Sources 98 Area Sources 60 Processors

(1.3 days)

CALSUM
698 Area Sources
(13.2 days)

Figure 4.4: Schematic showing approach to using both the serial and parallel vari-
ant of CALPUFF with 698 sources. Approach using the serial variant
divides up the 698 sources evenly and utilizes seven individual comput-
ing resources. The resultant seven concentration fields are then added
using the utility, CALSUM. Timing information for the serial variant is
presented as the longest amount of time taken to simulate one of the
seven concentration fields using one of the seven individual computing re-
sources. The parallel model utilized 60 processor cores across 15 clustered
nodes to simulate a yearlong scenario.

A field plot of the annual average PMj, concentrations (pug m—2) resultant from the
emissions from ocean-going vessels off the coast of California for 2005 is shown in
figure 4.5 from both the serial variant (a.) and the parallel variant (b.). The results
from the parallel variant appear equivalent to that of the serial model.

More quantitative metrics of model inter-comparison are shown in both figure 4.6 and
table 4.1. Each pollutant species (concentrations from the 75" percentile or greater)
from CALPUFF is plotted against the serial and parallel variant in figure 4.6. The

parallel variant nearly exactly reproduces the results from the serial variant.

32

serial CALPUFF (v5.8) Parallel CALPUFF

I
500 b
.

500
a.
400 4001
300 3001 16
14 &
200 204 3
£
2 2
2
— 100 = ™ =
=1 hog
_g x =
N o z
0 0 L .
z z 08 %
[@ z
2 -g 06 T
€ 1004 ~1004 % ©
E 100 E 100 S
-l - c
o4 £
<
200 2004
o2
300 3004 Lo
400 4004
T T T T T T T T T T
400 300 200 00 0 100 200 300 40 50 400 300 200 00 0 100 200 300 400 500
Lambert X (km) Lambert X (km)

Figure 4.5: Annual average PMj, concentrations (g m~3) resultant from the emis-
sions from ocean-going vessels off the coast of California parameterized
in the model as 698 area sources; a) are from the serial CALPUFF vari-
ant (version 5.8—level 070623); b) are from parallel CALPUFF. All re-
sults are processed with the post-processing software, CALPOST. Parallel
CALPUFTF results are obtained 10 times faster using 15 cluster nodes than
when using the sequential CALPUFF variant (version 5.8—level 070623).
Both simulations performed on Intel® Core™2 Quad Q6600 processors
(8MB Cache, 2.40 GHz, 1066 MHz FSB) with 4GB DDR3 SDRAM.

33

“T°'F O[qe) Ul PIJSI] OS[R oI SO1ISIRIG “ADRINDOR JO SHSIP JURIYIUSIS ST (]S, PUR ‘I0LI0 UROUWI POZI[RULIOU
ST NN, ‘Serq ueow 10y st (I, OUI[poI-paysep © se poyjo[d st oul [:1 oy, 'pajjold oxe oyuedred ,,G) oY} 0y
[enbo 10 wey) 109esIs SUoIpRIIEOU0d solads ATu() "oess 80[-30] ® w0 pajjo[d oIe (so[old onjq uedo) SUOIIRIIUSIUO))
(ON+PON = “ON) w8011 Jo sepixo (8 pue ‘proe oL (J ‘eruowrue (-9 ‘OpIxolp Injms ('p ‘@jerjmu (-0 ‘9jejms
(*q ‘ssel 10 IejouureIp Ul wir! ()T Jo Iejyewr ajemorired (‘e 10} JINJTVD [o[eTed snsioa (£790L0 [9AS]—K'G UOISIaA)

AANdTVD [eues yym pauriopad (g§ UOI0Des pue ['g UOIDSS Ul POQLIISOP) UOIJR[NUIIS SUO[IRAA © WO} GOOF WO

S[OSSOA SUI0S-URIIO WOIJ SUOISSTUID FUISTL 8103d0001 [[€ Y€ (o_wi H17) SUOIPRIFULOU0) 0FeIoAR IU-T [enuue jo uosiredwo)) 9 oInsig

44NdvO |aleied d44NdIvO [eleted

44ndVO I18iiered
Ot Ok Aot 0k Ot Ok L0t
Ot
L0t
w w o
@ Ol @© @
ot g - &
Q [¢] o
> > >
— — -
o o o
c c c
m m m
m m m
Ot
L0t
0k
g-wo 6ri xOZ g-wo Bri mOZI
43NdIVO IoleIed 44NdVO Ielesed 44NdTVO Riesed 44NdIVO 19lesed
Ot Ok Ot K Ot 0t L0k 0k Ok
P
Ot
Ok
g g o 8 o 8
& o = =
(e] o [¢] o
b > b >
— — — -
T) & &
—O— c c c c
m m m m
m m m m
¢vas v:vas | ot :
9-38£°2 ‘NN ~3eL8HAN | o€ AR 1
9-3582- :GN g 6-322'6 ‘AN ‘9 9-3s2'1- g
- Ol - 0t
.2
g-wo b1 “0g

g-wo bri mOZ g-Wo Bri |w0w g-wo Bri o_._>_n_

34

Significant digits of accuracy (SDA) [Sandu et al., 1997] is used to measure the detailed

numerical differences between the parallel and serial variant. We calculate SDA using:

. 2
G — Chg

z : C’serial

Ck Jj=a k"j

(4.4)

-1
SDA = —log | maxy, - (Z 1) .

Ck Jj=a

This metric incorporates a modified root mean square norm of the relative difference
of the parallel solution (Cy ;) with respect to the serial solution (Cy«*) for species
k at receptor 7. A minimum threshold value, a, prevents inclusion of small concen-
trations that are not meaningful. We, however, adopt a value of 0 for a to assess

differences across all modeled concentrations which span a several orders of magni-

tude.

Additional metrics used to evaluate numerical accuracy are mean bias, normalized
mean bias, and normalized mean error. Results for all model evaluation statistics are
presented in table 4.1. The parallel variant is able to reproduce each concentration
from 2 to 5 significant digits; however, the biases in all simulated concentrations are

negligible, ranging from 1x107¢ to 1x107° ug m=3.

Species P.]V[m S0ﬁ7 NO; S02 NH3 HNO?, JVOz
Mean Bias (ug m=3) -1.27E-06 -6.03E-07 9.22E-09 -2.35E-06 -1.65E-08 -1.05E-06 -2.29E-06
NMB (%) -2.73E-04 -1.30E-04 1.97E-06 -1.88E-04 -2.51E-04 -1.91E-04 -7.26E-05
NME (%) 3.34E-04 2.22E-04 8.73E-05 2.38E-04 3.10E-04 251E-04 1.10E-04
SDA 3 4 4 2 5 3 2

Table 4.1: Mean bias (g m™3), normalized mean bias (%), normalized mean er-
ror (%), and significant digits of accuracy for each modeled CALPUFF
species as an annual average from parallel CALPUFF relative to serial
CALPUFF (version 5.8—level 070623) from a yearlong simulation using
698 area sources.

N
1
Mean Bias = ——— Z (Csem'al - Cparallel) (45)

N,
receptors i=1

35

Zij\il (Cserial - Cparallel)

~ x 100%
Zi:l Csem'al

Normalized Mean Bias =

Zij\il ‘Cserial - Cparallell

~ x 100%
Zi:l Cserial

Normalized Mean Error =

36

(4.6)

(4.7)

CHAPTER V

Recommended future improvements

Although the parallel CALPUFF model has shown promising performance improve-
ments that open new avenues for applications, there are areas for additional speed-
ups. Most notably are redundant “puff” calculations performed by each process and
load imbalances between processes that may result in underuse of processor elements.
Some air quality model grids, like the gridded receptors in CALPUFF, can be dimen-
sioned unequally in the x- and y- directions (i.e. either a square or rectangle) and,
depending upon the number of partitions (or active processing elements), may result
in a configuration where processors are assigned unequal numbers of grid cells, or
receptors, to sample creating load imbalances. Load imbalances may result in proces-
sors with smaller workloads waiting for other process elements with greater workloads
to finish their tasks. In addition to unequal domain decompositions, instances where
puff sampling is unequal (i.e. spatially uneven distribution of emissions sources) may
result in a wide range of CPU use. This is the case for the scenario presented in
Section 4.3 as the majority of area emissions are confined to the San Francisco Bay
and the Los Angeles and Long Beach shipping ports. When the receptor domain is
divided up amongst the active PEs, the PEs assigned the receptors near these ports

will have the greatest amount of puff sampling to perform.

We define a metric to describe this imbalance result, CPU occupancy, defined as the
fraction of time each processor spends on receptor sampling during the course of a
simulation. A plot of CPU occupancy versus processor element ID is presented in fig-

ure 5.1. Processor elements with higher CPU occupancy fractions are in regions where

37

many puffs must be sampled (e.g. near shipping ports, in this case), whereas proces-
sor elements with lower CPU occupancy fractions are in areas where there are fewer
emission sources and fewer puffs to sample. We propose using a dynamic workload
decomposition, rather than the current static workload (receptor) decomposition, to

correct for these imbalances and improve performance.

< 1r
)
& —
2 05)
[&]
O
o) —
>
o 0 | | | | | | | |
(@]
0 10 20 30 40 50 60 70 80

Processor Element

Figure 5.1: CPU occupancy (%), defined as the fraction of time each processor spends
on gridded receptor sampling, for each processor element for a yearlong
simulation (see Sections 2.1 and 4.3) using 76 processors.

The performance of parallel CALPUFF will improve as the averaging times are in-
creased from the default 1-hour average to the maximum allowed averaging period
of 1-year because of the decreased frequency that inter-CPU communication must
occur (Section 3.2) before concentration and flux fields are written to binary output.
However, users must be careful as the EPA only endorses the hourly concentration

output for regulatory applications.

5.1 Redundant “puff” calculations and machine memory lim-

itations

Under high spatial resolution applications of parallel CALPUFF (e.g. California’s

San Joaquin Valley simulated at 250-m x 250-m resolution with 20,000 sources, and

38

160,000+ discrete receptors, integrated forward in time for one year), machine mem-
ory limitations may arise. The dimensioning of the arrays that hold receptor, puff,
and meteorological information in CALPUFF are set at compile time. High spatial
resolution applications require these arrays to have substantailly larger dimensions
than when the model is used a lower spatial resolution. Sufficient machine memory
is required to meet these demands.

A potenital solution to this computational performance hinderance is to free ma-
chine memory space for each proccess by avoiding redundant “puftf” calculations
through fully decomposing the modeling domain’s meteorological fields, emission
sources, and “puffs” in addition to the already decomposed receptor domain. This
future task will be necessary for such high-resolution applications to be possible with

out upgrading machine memory hardware (e.g. from 8 GB RAM to 16 GB RAM).

39

CHAPTER VI

Conclusions

In this report we assess the feasibility of and implement a strategy to improve the
computational performance of CALPUFF (version 5.8—level 070623), a regulatory
source-receptor air quality model approved by the EPA for long distance air pollution
transport. We propose and implement a strategy using the MPICH-2 library. The
approach performs a 1-dimensional domain decomposition of all receptors across all
active processors. A parallel output routine is also implemented to reduce perfor-
mance penalties associated with inter-process communication. Speed-ups of 16 over
the serial variant are realized, and the capability to simulate tens of thousands of
emissions sources is proven, thus allowing for many new applications of the model
to be possible. We find equivalent numerical results between the parallel and serial
model variants. The biases in all simulated concentrations are negligible, ranging
from 1x107°% to 1x107° pg m™3, and the model is able to reproduce each species
concentration from 2 to 5 significant digits. Future improvements to the parallel
model that may improve computational performance include fully decomposing the
modeling domain’s meteorological fields, emission sources, and “puffs”. The parallel
CALPUFF variant should be a useful tool for regulatory modeling when the num-
ber of receptors and/or emission sources is too great to complete a simulation in a

reasonable amount of time using the serial model variant.

40

AUXILLARY MATERIAL A

AUXILLARY MATERIAL

0.321

0.3F 8-day simulation using 100 area sources
0.28f
0.26
0.24F

0.22f

o
()

Fraction of computational time
4
>
T

o

—

=)
T

0.14}

= Explicit Offset
= Shared File Pointer

1 1 |
4 6 8 10 12 14 16 18 20
Number of processor elements

Figure A.1: Scaling of parallel output using an explicit offset file pointer method
versus using a shared file pointer method presented as fraction of com-
putational time versus number of processor elements. Results are from
an 8-day simulation using 100 area sources.

41

A.1 Listing of Fortran code additions and modifications

Fortran routine

Purpose

mpif_mod.f90
mpriranktasks_mod.f90
mpiwrdatucr.F
mpiwrdatur.F
mpilaunch.f90
mpidecomp_mod.f90
mpifilesize_mod.f90
mpiopenlog.fo0
mpiwroutl.F
mpiopenot.F
mpiwrdatu.F
mpioutsam.F
mpidecomplD.F
mpiwrdatc.F
mpioutput.F
mpicomprs.F
mpixtract.F
params.puf
CALPUFF.FOR *

Tells routine to include 'mpif.h’”

Hold processor rank element and number of active tasks”

Write an uncompressed discrete CTSG receptor concentration/ flux data record in parallel*
Write an uncompressed discrete receptor concentration/ flux data record in parallel?
Launch MPI%

Hold the MPI decomposition variable information*

Hold the file size in bytes for the explicit offset pointer *

Open a log file for each processor element®%

Write the header records to output filesh#

Open all input/output filest#

Write an uncompressed gridded concentration or dry/wet flux data record in parallel®#
Write a gridded field of real or integer numbers in parallel®#

Decompose gridded, non-gridded discrete, and CTSG receptors 1-dimensionally*

Write a compressed gridded concentration/ flux data record in parallel¥#

Output concentration dry and wet deposition fields in parallel®#

Compress output array in parallel®#

Extract sampling receptor grid from computational grid®#

Removed hard coded I/O unit numbers for parallel output®#

Main CALPUFF program?#%

Table A.1: *Modified internal subroutines MAIN, SETUP, OPENOT, WROUT1I,
CALCPF, CALCBC, OUTPUT, COMPRS, FIN, FOGOUT, QAPLOTI,
COMP, READCF, RESTARTO, MFLXHDR, MBALHDR, PLMFOG,
OUTSAM (f) Created or modified by D.J. Rasmussen (UC-Davis), (%)
Created or modified by Dazhong Yin (CARB), (#) Created by Joe Scire
(T.R.C/ Earth Tech)

42

A.2 CALPUFF test case control file

Variable Description EPA Default Our Values
METDAT CALMET input data filename CALMET.DAT secaq22002.dat
PUFLST Filename for general output from CALPUFF.LST CALPUFF.LST
CALPUFF
CONDAT Filename for output concentration data CONC.DAT parallel_test.con
DFDAT Filename for output dry deposition fluxes DFLX.DAT DFLX.DAT
WEFDAT Filename for output wet deposition fluxes WFLX.DAT WFLX.DAT
VISDAT Filename for output relative humidities VISB.DAT VISB.DAT
(for visibility)
IBYR Beginning year User Defined 2002
IBMO Beginning month User Defined 4
IBDY Beginning day User Defined 1
IBHR Beginning hour User Defined 1
IRLG Length of runs (hours) User Defined 192
NSPEC Number of species modeled (for MESOP- User Defined 7
UFF II chemistry)
NSE Number of species emitted 3 4
MRESTART Restart options (0 = no restart), allows 0 0
splitting runs into smaller segments
METFM Format of input meteorology (1= CAL- 1 1
MET)
AVET Averaging time lateral dispersion parame- 60 60
ters (minutes)
MGAUSS Near-field vertical distribution (1 = Gaus- 1 1
sian)
MCTADJ Terrain adjustments to plume path (3 = 3 1
Plume path)
MCTSG Do we have subgrid hills? (0 = No), 0 0
allows CTDM-like treatment for subgrid
scale hills
MSLUG Near-field puff treatment (0 = No slugs) 0 0
MTRANS Model transitional plume rise? (1 = Yes) 1 1
MTIP Treat stack tip downwash? (1 = Yes) 1 1
MSHEAR Treat vertical wind shear? (0 = No) 0 0
MSPLIT Allow puffs to split? (0 = No) 0 0
MCHEM MESOPUFF-II Chemistry? (1 = Yes) 1 1
MAQCHEM Aquesous phase transformation modeled? 0 0
(0 = No)
MWET Model wet deposition? (1 = Yes) 1 1
MDRY Model dry deposition? (1 = Yes) 1 1
MDISP Method for dispersion coefficients (3 = PG 3 3
& MP)
MTURBVW Turbulence characterization? (Only if 3 3
MDISP =1or5)
MDISP2 Backup coefficients (Only if MDISP =1or 3 3

5)

43

Variable Description EPA Default Our Values
MROUGH Adjust PG for surface roughness? (0 = 0 0
No)
MPARTL Model partial plume penetration? (0 = 1 0
No)
MTINV Elevated inversion strength (0 = compute 0 0
from data)
MPDF Use PDF for convective dispersion? (0 = 0 0
No)
MSGTIBL Use TIBL module? (0 = No) allows treat- 0 0
ment of subgrid scale costal areas
MREG Regulatory default checks? (1 = Yes) 1 0
CSPEC Names of species modeled (for MESOPUF User Defined S02, SO4, NOX,
IT, must be SO2, SO4, NOx, HNO3, NO3) HNO3, NO3,
PM10, NH3
NX Numer of eas-west grids of input meteorol- 273
ogy
NY Number of north-south grids of input me- User Defined 273
teorology
NZ Number of vertical layers of input meteo- User Defined 12
rology
DGRIDKM Meteorology grid spacing (km) User Defined 4
ZFACE Vertical cell face heights of input meteorol- User Defined 0.,20.,40.,80.,160.,300.,600.,1000.,
ogy 1500.,2200.,3000.,4000.0,5000.0
XORIGKM Southwest corner (east-west) of input me- User Defined -497.132
teorology
YORIGIM Southwest corner (north-south) of input User Defined -494.91
meteorology
IUTMZN UTM zone User Defined 19
XLAT Latitude of center of meteorology domain User Defined 37N
XLONG Longitude of center of meteorology User Defined 120.5W
XTZ base time zone of input meteorology User Defined PST
IBCOMP Southwest of X-index of computational do- User Defined 1
main
JBCOMP Southwest of Y-index of computational do- User Defined 1
main
IECOMP Northeast of X-index of computational do- User Defined 273
main
JECOMP Northeast of X-index of computational do- User Defined 273
main
LSAMP Use gridded receptors (T = Yes) T T
IBSAMP Southwest of X-index of receptor grid User Defined 1
JBSAMP Southwest of Y-index of receptor grid User Defined 1
IESAMP Northeast of X-index of receptor grid User Defined 273
JESAMP Northeast of Y-index of receptor grid User Defined 273
MESHDN Gridded receptor spacing = 1 1
DGRIDKM/MESHDN
ICON Output concentrations? (1 = Yes) 1 1
IDRY Output dry deposition flux? (1 = Yes) 1 0
IWET Output wet deposition flux? (1 = Yes) 1 0
IVIS Output RH for visibility calculations (1 1 0

=Yes)

44

Variable Description EPA Default Our Values
LCOMPRS Use compression option in output? (T = T T
Yes)
ICPRT Print concentrations? (0 = No) 0 0
IDPRT Print dry deposition fluxes? (0 = No) 0 0
IWPRT Print wet deposition fluxes? (0 = No) 0 0
ICFRQ Concentrtion print interval (1 = houwrly) 1 1
IDFRQ Dry deposition flux print interval (1 = 1 1
hourly)
IWFRQ Wet deposition flux print interval (1 = 1 1
hourly)
IPRTU Print output wumits (1 = g/m**3; 1 1
g/m**2/s)
IMESG Status messages to screen (2 = Yes) 2 2
Output Where to output various species User Defined All modeled
Species species
LDEBUG Turn on debug tracking? (F = No) F F
Dry Gas Dep. Chemical parameters of gaseous deposition User Defined S02, NOX
species
Dry Part. Chemical parameters of particulate depo- User Defined for diesel partic-
Dep. sition species ulate matter
RCUTR Reference cutivle resistance (s/cm) 30 30
RGR Reference ground resistance (s/cm) 10 10
REACTR Reference reactivity 8 8
NINT Numer of particle-size intervals 9 9
IVEG Vegetative state (1 = active and un- 1 1
stressed)
Wet Dep Wet deposition parameters User Defined for diesel partic-
ulate matter
MOZ Ozone background? (1 = read from 1 0
ozone.dat)
BCKO3 Ozone default (ppb) (Use only for missing 80 80
data)
BCKNH3 Ammonia background (ppb) 10 10
RNITE1 Nighttime SO2 loss rate (%/hr) 0.2 0.2
RNITE2 Nighttime NOX loss rate (%/hr) 2 2
RNITE3 Nighttime HNO3 loss rate (%/hr) 2 2
SYTDEP Horizontal size (m) to switch to time de- 550 550
pendence
MHFTSE Use Heffer for vertical dispersion? (0 = 1 1
No)
JSUP PG Stability class above mixed layer 5 5
CONK1 Stable dispersion constant (Eq. 2.7-3) 0.01 0.01
CONK2 Neutral dispersion constant (Eq. 2.7-4) 0.1 0.1
TBD Transition for downwash algorithms (0.5 = 0.5 0.5
ISC)
IURB1 Beginning urban landuse type 10 10
IURB2 End urban landuse type 19 19

45

A.3 User Guide to Parallel CALPUFF

1. Requirements

Parallel CALPUFF is written in Fortran and must be compiled with a Fortran com-
piler, such as the Intel Fortran Compiler (IFORT). The IFORT compiler is free under
non-commercial-use licenses, and binary packages are available online for public down-

load.!

Parallel CALPUFF must be run in a UNIX environment with the Message Passing In-
terface - Chameleon (MPICH) library properly installed. MPICH is free, and binary
packages are available online for public download. There are currently no existing

non-MPI companion algorithm and routines in the parallel CALPUFF code.?

2. Compile parallel CALPUFF
Once the aforementioned system requirements have been met, the next step is to

un-tar and un-zip the parallel CALPUFF source code.

$ tar -zxvf parallel CALPUFF.tar.gz -C /target_directory

In the target directory (the directory that was un-tar’ed) will be a number of files and
three directories. The source code in the directory £90_src must be compiled before

the parallel CALPUFF executable is built. To do this from the target directory:
$ cd f90_src
...then...

$ make

ITFORT binary packages for UNIX available at: http://software.intel.com/en-us/
non-commercial-software-development
2MPICH binary packages for UNIX available at: http://www.mpich.org/downloads/

46

One the object files in £90_src are compiled, the parallel CALPUFF executable may

be built in the target directory:

$ cd ..
...then...
$ make

If compilation was successful, the parallel CALPUFF executable should now be built.

Check to see if it is in the target directory:

$ 1s calpuff.exe

3. Setup CALPUFF list file

Like any CALPUFF simulation, the list or control file needs to have the proper paths
to input and output files and the desired model settings adjusted. This is done by
editing the input file (*.inp). There is an example input file in the un-tar’ed target

directory. The input file must be in the directory with the model data for thees in-

structions to be successful, see shell script run_parallel_calpuff.sh

4. Conscript machines to run parallel CALPUFF

Use the script farm_to_nodes.sh to start mpd on the master node (e.g. node 200) and

get the mpd port number using:

$./farm_to_nodes.sh -b 200 200 "mpd -d -e"

This should retreive the port number, for instance:

mpd_port=51204

47

Determine what nodes will run parallel CALPUFF with the master node (e.g. node

200) and then use the script farm_to_nodes.sh and port number to start a ring:

$./farm_to_nodes.sh -b 191 199 "mpd -d -h n200 -p 51204"

This will start a 10 node ring with node 200 as the master node.

5. Execute parallel CALPUFF

Parallel CALPUFF must be executed from the master node. Remote shell to the

master node and change directory to where parallel CALPUFF files were unpacked:

$ 1rsh n200

user@?200 $ cd ../../target_directory

The script run_parallel_calpuff.sh starts the parallel CALPUFF simulation on the

constructed ring of nodes and is executed on the master node in the following manner:

user@?200 $ nohup ./run_parallel_calpuff.sh > run.log 2>&1 &

This places the simulation in the background and writes both standard output and
error messages to a log file. At any time, the trailing contents of the log file can be

viewed in real-time by entering:

user@n200 $ tail f run.log

You may log out and the simulation will continue to run.

48

BIBILIOGRAPHY

Bennett, M. J., M. E. Yansura, . G. Hornyik, J. M. Nall, D. G. Caniparoli, and C.
G. Ashmore (2002), Evaluation of the CALPUFF Long-range Transport Screening
Technique by Comparison to Refined CALPUFF Results for Several Power Plants in
Both the Eastern and Western United States., paper presented at Proceedings of the
Air & Waste Management Association’s 95th Annual Conference, Baltimore, MD,
June 23-27, 2002.

CARB (2008), Appendix E1: CALPUFF Dispersion Modeling of Ocean-Going Ves-
sels Emissions, 21.

Cremades, P. G., E. S. Puliafito, and R. P. Fernandez (2010), GPU Acceleration of
CALPUFF, Mecnica Computacional, XXIX(71), 7043-7051.

Dabdub, D., and J. H. Seinfeld (1994), Air quality modeling on massively parallel
computers, Atmos Environ, 28(9), 1679-1687.

Dabdub, D., and J. H. Seinfeld (1996), Parallel computation in atmospheric chemical
modeling, Parallel Comput, 22(1), 111-130.

Dabdub, D., and R. Manohar (1997), Performance and portability of an air quality
model, Parallel Comput, 23(14), 2187-2200.

Elbern, H. (1997), Parallelization and load balancing of a comprehensive atmospheric
chemistry transport model, Atmos Environ, 31(21), 3561-3574.

Emery, C.,; G. Wilson, and G. Yarwood (2008), CAMx MULTIPROCESSING CA-
PABILITY FOR COMPUTER CLUSTERS USING THE MESSAGE PASSING IN-
TERFACE (MPI) PROTOCOLRep., ENVIRON International Corportation.

Grell, G. A., J. Dudhia, and D. R. Stauffer (1995), A description of the fifth-generation
Penn State/NCAR mesoscale model (MM5), NCAR Technical Note, NCAR/TN-
3984+STR, 122pp. Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost,
W. C. Skamarock, and B. Eder (2005), Fully coupled online chemistry within the
WRF model, Atmos Environ, 39(37), 6957-6975.

Gropp, W. (2002), MPICH2: A New Start for MPI Implementations, in Proceed-

ings of the 9th European PVM/MPI Users’ Group Meeting on Recent Advances in
Parallel Virtual Machine and Message Passing Interface, edited, p. 7, Springer-Verlag.

49

Gropp, W., E. Lusk, and A. Skjellum (1994), Using MPI: Portable Programming with
the Message Passing Interface, MIT Press, Cambridge, MA.

Jin, H. Q., D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chapman (2011),
High performance computing using MPI and OpenMP on multi-core parallel systems,
Parallel Comput, 37(9), 562-575.

Kumar, N., E. Segall, P. Steenkiste, and A. G. Russell (1997), Parallel and distributed
application of an urban-to-regional multiscale model, Computers &; Chemical Engi-
neering, 21(4), 399-408.

Levin, E. (1989), GRAND CHALLENGES TO COMPUTATIONAL SCIENCE, Com-
munications of the Acm, 32(12), 1456-1457.

Levy, J. L., J. D. Spengler, D. Hlinka, D. Sullivan, and D. Moon (2002), Using
CALPUFF to evaluate the impacts of power plant emissions in Illinois: model sensi-
tivity and implications, Atmos Environ, 36(6), 1063-1075.

Molnr Jr, F., T. Szakly, R. Mszros, and 1. Lagzi (2010), Air pollution modelling using
a Graphics Processing Unit with CUDA, Computer Physics Communications, 181(1),
105-112.

Sandu, A., J. G. Verwer, M. Van Loon, G. R. Carmichael, F. A. Potra, D. Dabdub,
and J. H. Seinfeld (1997), Benchmarking stiff ode solvers for atmospheric chemistry
problems-I. implicit vs explicit, Atmos Environ, 31(19), 3151-3166.

Saylor, R. D., and R. I. Fernandes (1993), On the parallelization of a comprehensive
regional-scale air quality model, Atmospheric Environment. Part A. General Topics,
27(4), 625-631.

Scire, J. S., D. G. Strimaitis, and R. J. Yamartino (2000a), A User’s Guide for the
CALPUFF Dispersion Model (Version 5).

Scire, J. S., F. W. Lurmann, A. Bass, and S. R. Hanna (1984a), User’s guide to the
MESOPUFF II model and related processor programs. , U.S. Environmental Protec-
tion Agency, Research Triangle Park, NC, EPA-600/8-84-013.

Scire, J. S., F. W. Lurmann, A. Bass, and S. R. Hanna (1984b), Development of the
MESOPUFF II dispersion model., U.S. Environmental Protection Agency, Research
Triangle Park, NC, EPA-600/3-84-057.

Scire, J. S., F. R. Robe, M. E. Fernau, and R. J. Yamartino (2000b), A User’s Guide
for the CALMET Meteorological Model (Version 5). 332pp.

Seinfeld, J. H. (1989), Urban Air Pollution: State of the Science, Science, 243(4892),

20

745-752.

Suk-Hyun, Y., Y. Jin-Uk, K. Kyung-Ho, Y. Hee-Young, K. Youn-Seo, and K. Heey-
ong (2011), CALPUFF module acceleration with OpenMP

Tonse, S. R., and N. J. Brown (2007), Parallel Efficiency Analysis and Performance
Improvement of CMAQ V4.5 on a Beowulf Linux ClusterRep. No. 62896, Lawrence
Berkeley National Laboratory, Report prepared for California Energy Commission.

U.S. Environmental Protection Agency (2005), Revision to the Guideline on Air Qual-
ity Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain)
Dispersion Model and Other Revisions; Final RuleRep., 70 FR 68218-68261.

Zhou, Y., J. I. Levy, J. K. Hammitt, and J. S. Evans (2003), Estimating population
exposure to power plant emissions using CALPUFF: a case study in Beijing, China,

Atmos Environ, 37(6), 815-826.

Zlatev, Z. (1995), Computer Treatment of large air pollution models, 358 pp., Kluwer
Academic Publishers, Boston, MA.

o1

