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1. Introduction

Local sea level rise (LSLR) over the coming decades is expected to substantially alter the flood
insurance and coastal real estate market (e.g. Houser et al. 2015; Abel et al. 2011; Bin et al. 2011).
It is no longer sufficient for buyers of homes in coastal regions to assume that sea levels and flood
risk in their region will remain constant over the typical multi-decade ownership period, including
the three decade duration of a typical home mortgage. A home is often the biggest financial
investment that an individual will make in their lifetime. As such, buyers of homes in coastal
regions could substantially benefit from being better informed of the financial risks stemming
from evolving local natural hazards, such as LSLR.

While several climate change assessments provide projections of future sea level rise to inform
financial decision making, these projections generally do not 1) provide probabilistic estimates of
local physical climate variables, such as LSLR 2) provide time frames of when particular levels of
sea level rise will occur and 3) estimate the probability of flood events over time.

This study presents a probabilistic risk assessment framework for determining the costs and
benefits of purchasing flood insurance, and applies it to a $725,000 home in Linwood, New Jersey.
The home is currently located in a minimal flood risk area, but the flood risk is expected to increase
over the 21st century due to factors that include LSLR. A cost-benefit analysis is done to asses
whether or not the homeowner should purchase insurance at present at a low rate from the National
Flood Insurance Program (NFIP), or if they should not purchase insurance and instead pay for
flooding damages throughout the home ownership period. This framework, and the associated
computer code (attached in the appendix), could be applied to any structure in a region vulnerable
to sea level rise to characterize future flood risk.

2. Data and Methods

Following the approach used by Tebaldi et al. (2012), this study’s analysis begins with estimating
the historical rate of LSLR at the tide gauge nearest to the home. Hourly tide gauge data are
detrended using the local rate of LSLR to isolate historical storm events and astronomical tidal
components. Extreme value theory is used to estimate annual return levels for flood heights in
the current climate. Probabilistic projections of relative sea level rise (RSL; annual sea level rise
relative to the year 2000) from Kopp et al. (2014) are used to generate future return levels for
flood heights. Finally, both empirical depth-damage functions and the projected flood heights are
used to calculate expected losses over the homeownership period and are compared to the costs
of paying flood insurance premiums throughout the same time frame. An overview of the risk
assessment framework used in this study is shown in Fig. 1.
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a. Current trends and extreme value analysis

1) CURRENT TRENDS AND HISTORICAL STORM TIDE

Hourly tide gauge data observed at the nearest tide gauge station to the home in Linwood, New
Jersey are obtained for a tide gauge at Atlantic City, New Jersey (Station ID: 8534720) from
the University of Hawaii Sea Level Center (UHSLC) (retrieved http://uhslc.soest.hawaii.

edu/, April 2016). The UHSLC maintains a database of sea level observations from a global
network of tide gauges. Data from the UHSLC have undergone a thorough quality control process.
This study’s hourly values are adjusted so that they are relative to the historical mean high water
(MHW) datum at the tide gaugea. Hourly data for the period 1911–2015 are aggregated to annual
means. The trend in annual mean sea level at Atlantic City from 1911 to 2015 is shown in Fig. 2.
The rate of LSLR is estimated to be 4.1 mm yr�1 and is roughly constant throughout the 105 year
period. The remainder of the historical storm tide analysis uses hourly data for the period 1986–
2015. This 30-year record is long enough to include multiple storms, weather, and tidal events that
capture historical storm tide variability. It is also recent and short enough to lessen the likelihood
of capturing any change in the frequency and severity of weather and tidal events that could occur
over centuries(e.g., Tebaldi et al. 2012). The historical tide gauge record used is nearly complete
with < 3% of the hourly values missing.

To isolate the effects of historical weather and tidal activity, the hourly time series is detrended
using the long-term trend calculated with ordinary least squares:

ỹi = yi � â1ti

where ỹ is the detrended value, yi is the original value, â1 is the estimated regression coefficient
from ordinary least squares (i.e. the trend), and ti is the time period. The detrending preserves the
MHW level over the current National Tidal Datum Epoch. Daily maximum water levels are then
calculated from the detrended hourly values.

2) EXTREME VALUE ANALYSIS

Extreme value analysis (EVA) is employed to assess flood height return levels. EVA is a sta-
tistical technique that is used to estimate the occurrence of events that are theoretically too rare
to be found in observation records (Coles 2001). Specifically, a peak-over-threshold approach is
applied to model the tail of the historical storm tide distribution with a generalized Pareto distribu-
tion (GPD). Following Tebaldi et al. (2012), the 99th percentile from the historical distribution of

aThe Mean High Water (MHW) value is calculated as the average of all the high water heights occurring over the National Tidal Datum Epoch,

currently 1983–2001 for the Atlantic City tide gauge station. For the current National Tidal Datum Epoch, the MHW for Atlantic City is 2.787

meters.
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observations (0.6 m above MHW) is chosen as the threshold (Fig. 3). Since multiple consecutive
measurements could be associated with the same event (i.e. a storm), values above the thresh-
old are declustered using the extRemes module for R. In the case of successive exceedances, the
declustering algorithm only uses the maximum value of the successive exceedances. Ideally, this
helps assure statistical independence between observations.

The parameters of a GPD are fit to the declustered daily maximum observations using maximum
likelihood estimation. The GPD models the distribution of the threshold exceedances:

P(z�µ  y|z > µ) =
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where µ is the threshold above which exceedances are counted, and s and x are the scale and shape
parameters, respectively. The shape parameter determines the decay rate of the distribution’s upper
tail. A shape parameter of zero (x = 0) leads to an exponential distribution, a shape parameter
greater than zero (x > 0) leads to a heavy tailed distribution, and a shape parameter greater than
zero (x < 0) leads to a bounded distribution. The GPD parameters for the Atlantic City tide gauge
location are given in Table 1. The shape parameter is approximately zero, leading to an exponential
distribution.

The associated return levels for water height above MHW, xT , for a given return period are
calculated with:
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where u is the GPD threshold of 0.6m, ŝ is the shape parameter, T is the return period (years),
zu is the probability of exceeding the threshold, x is the shape parameter, and l is the number of
events per year (in this case, 365 because daily data are used). Fig. 4 shows the historical return
levels for Atlantic City.
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s

)> 0
cy > 0
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b. Sea level projections

Kopp et al. (2014) makes available probabilistic sea level projections for the time slices of 2030,
2050, and 2100. Probability distribution values in between these periods are interpolated with a
spline method. The probabilistic RSL projections for select quantiles for Atlantic City are plotted
in Fig. 5. The climate forcing scenario RCP 8.5 is used and is analogous to a ‘business as usual’
greenhouse gas emissions scenario. Future return levels of flood heights at the Atlantic City tide
gauge are generated using 10,000 Monte Carlo samples from the Kopp et al. (2014) distributions
of RSL and the extreme value distribution of historical storm tide:

P{H f  h} = P{H + S(t) �  h}) P{H f > h} = 1 � P{H + S(t) �  h}

where H f is the flood height, H is the storm tide (assumed to be time invariant), and S(t) is the
RSL for year t. Although some studies suggest that future tropical cyclone (TC) intensity may in-
crease in a warming climate (e.g. Knutson et al. 2010), in this study, TC characteristics is assumed
constant. Both cumulative distribution functions and return periods of water levels for past and
future years are presented in Fig. 6.

A flood occurs at the home when the flood height (H f ) is greater than the home elevation
(determined from a USGS digital elevation map or DEM). In the case of flooding, the home
elevation is a measure of the vulnerability component of risk. The elevations in the USGS DEM
are all relative to a fixed point called the North American Vertical Datum of 1988 (NAVD88). The
home in this study is roughly 3 meters above the NAVD88. The number of flood events per year
at the home is determined using 100,000 Monte Carlo samplings from the joint distribution of the
RSL projections and GPD distribution of historical storm tide. A large Monte Carlo sample size
is used to capture the very low probability of flooding for the first two decades in the 21st century.

P{H f  Eelev} = P{H + S(t)  Eelev}) P{H f > Eelev} = 1 � P{H + S(t)  Eelev}

where Eelev is the home elevation. The probability of flooding at the home for each year from
2000—2100 is plotted in Fig. 7.

c. Depth-Damage Curves

Perhaps the most useful component of risk information for a decision maker is the consequence

of the outcome, in this case, the cost of flood damage. To link expected flood events at the home
with monetary loss, so-called depth damage functions are used. Depth-damage functions provide
estimates of the fractional loss of a structure as a function of the flood depth at the location of the
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structure. This study uses an empirical depth-damage function that is derived from measurements
taken by the U.S. Army Corps of Engineers after a flood event in near by Wilmington, Delaware,
approximately 50 miles from the home in this study located in Linwood, New Jersey. A depth-
damage function for a two story residential home and its contents is used (Fig. 8), and is retrieved
from the HAZUS package for R. The depth-damage function provides expected values of the frac-
tional loss for a given flood height, and when multiplied by the home value, gives the estimated
expected monetary loss.

d. Expected Annual Damage

Following Lin and Shullman (submitted), this study uses the metric expected annual dam-

age/loss (EAD) to calculate the expected monetary loss in a given year. To calculate the EAD
for a specific year, one must consider multiple events arriving within that year when water levels
exceed the home elevation. As such, the losses from these events are summed:

E [Ai|Ni = n] = E

"
Ni

Â
i=1

Li

#
= nE [Li]

where, Ni is the number of occurrences when water levels exceed the home elevation in year i

(assumed to be Poisson distributed with mean li) and E [Li] is the expected loss estimated using the
depth-damage function. In expectation, this becomes the product of the mean Poisson occurrence
rate,lt , and the expectation of the loss during the year:

E [At ] = E [Nt ]E [Lt ] = lt E [Lt ], where t is the year

Assuming independence between loss events and the absence of risk mitigation measures (e.g.
raising the home elevation, neighborhood levee construction), integration over a 30-year time
period (i.e. t1 to t2) can give the total expected monetary loss:

E [A] =
t2

Â
i=t1

liE [Li]

3. Results and Discussion

a. Flood Insurance Cost-Benefit

The monetized EAD for each year between 2000 and 2100 is shown in Fig. 9. In the near term,
the EAD is less than $1 yr�1. However, at the end of the 21st century, the annual EAD grows to
> $10,000 yr�1. These amounts are in 2016 U.S. dollars.
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An annual flood insurance quote for this property was obtained from floodsmart.gov. The home
is currently in a FEMA zone with minimal flood risk (zone C), as such, the current premium is
relatively low at $779 yr�1 for a $150,000 policy with a $2,000 deductible. For comparison, neigh-
boring homes in high-risk flood zones have quoted premiums of over $10,000 yr�1 for the same
policy. Assuming the homeowner buys at this present-day low rate and pays the same rate over the
period from 2020–2050, the total cost of annual flood insurance premiums would be $23,370. The
integrated expected annual loss over this same period is about $14. If the homeowner only con-
siders the EAD, they clearly should not purchase flood insurance for this property. However, the
EAD dramatically increases beyond the middle of the 21st century and could impact the valuation
of the home at the end of the ownership period.

b. Cautions

Some import caveats of this assessment are in order. First, only the expected annual damage
is considered. Insurance is generally not purchased to cover against expected annual damages,
rather it is intended to cover losses from low probability, high consequence (i.e. large financial
cost) events. Second, only the expected rate of SLR is considered. The actual rate of SLR could
be much higher or lower than the expected value that is used in this assessment. Moreover, some
recent studies suggest that glacier and ice shelf melt, which are significant contributors to SLR,
could occur much faster than perviously thought (e.g. DeConto and Pollard 2016; Hansen et al.
2016), leading to faster rates of SLR over this century. The projections from Kopp et al. (2014) do
not consider the findings of these recent studies and therefore could be considered as conservative
estimates of SLR. Third, the depth-damage functions do not take account of building fragility,
which could greatly affect structure vulnerability, and ultimately the EAD. Lastly, it is unlikely
that the NFIP flood insurance premiums will remain constant over a 30-year period. The NFIP
is a deeply politicized government program that must be periodically reviewed and re-authorized
by the U.S. Congress (Knowles and Kunreuther 2014). The NFIP debt liabilities currently exceed
$20 billion and premiums continue to not reflect true flood risk due to the political unpopularity of
placing higher costs on the homeowner.

4. Conclusion

A probabilistic framework for homeowner flood insurance cost-benefit is presented and applied
to a $725,000 home in Linwood, New Jersey that presently has very low flood risk, and, therefore,
very low flood insurance premiums. But because of the low elevation and proximity to the coast,
the home is vulnerable to future SLR over the remainder of this century. The framework in the
presented assessment consists of the following: return levels for current storm tide are constructed
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from 1) a historical distribution of sea level measured at a tide gauge near the home and 2) extreme
value analysis. Current flood height return levels are linearly shifted upward as a function of the
expected amount of RSL for each year in the 21st century. Future flood heights and depth-damage
functions are used to determine the annual expected damage the homeowner is expected to be
burdened with each year, and the costs are integrated over a hypothetical 30-year ownership period
(2020–2050).

The assessment concludes that the integrated expected annual damage is effectively negligible
compared to the total cost of the insurance premiums over the 30-yr period, suggesting that the
homeowner may be better off financially by not purchasing flood insurance. However, several
critical caveats regarding this finding are discussed that imply this study’s cost-benefit assessment
could be improved to better reflect evolving flood risk at the home location.

Acknowledgments. I thank M. Buchanan, A. Hatzikyriakou, and N. Lin for helpful discussion.
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FIG. 1. Flow chart of this study’s framework.

TABLE 1. Generalized Pareto Distribution parameters from maximum likelihood estimation for Atlantic City,

New Jersey. Values in parenthesis are +/- 2 standard deviations.

Site NOAA Station ID Record Length (Years) x̂ ŝ

Atlantic City, NJ 8534720 105 -0.0118 (-0.1471,0.1234) 0.1379 (0.1095, 0.1663)
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Computer codes for: “A probabilistic framework for homeowner flood insurance

cost-benefit analysis under rising seas”

data_qa.R

1 rm(list=ls(all=TRUE))
2 setwd("/Users/dmr/Dropbox/Courses/CEE460/proj/preproc")
3

4 library(xts)
5

6 dat = read.table("atlantic_city_hr_sealevel_1911-2015.csv",sep=",",header=TRUE)
7

8 # Create POSIX time variable
9 date = as.character(paste(dat$year,dat$month,dat$day,sep="-"))

10 hr = as.character(paste(dat$hour,":00",sep=""))
11 time = as.character(paste(date,hr,sep=" "))
12 dates <- strftime(time, format = "%Y-%m-%d %H:%M")
13

14 # Create data structure of hourly sea level and time
15 d <- structure(list(dates = dates, level = dat$level),.Names = c("dates", "level"),
16 row.names = c(NA, -857473L), class = "data.frame")
17 x <- xts(d[,-1], as.POSIXct(d[,1], format="%Y-%m-%d %H:%M"),
18 colnames=c("dates", "level"))/1000
19

20 # Annual average
21 ann = apply.yearly(x, colMeans)
22

23 # plot time series with linear trend
24 pdf(’annualtrend.pdf’,width=6,height=4,paper=’special’)
25 plot(index(ann),ann,lwd=2,ylab="Mean Sea Level (m)",xlab="Year",
26 main="Mean Sea Level at Atlantic City, NJ")
27 mtext("(Bkgd: 2.2 0.2 mm/y)")
28

29 # calculate annual trend
30 v = 1:length(ann)
31 ann.fit = lm(ann~v)
32 summary(ann.fit)
33

34 # add fitted values to plot
35 text(x=as.Date("1910-12-31 23:00:00 EST"),2.3,"trend: 4.1 0.1 mm/yr")
36 lines(index(ann),ann.fit$fitted.values,lty=2,col=’red’,lwd=2)
37 dev.off()
38

39 # Subtract MHW
40 x = x - 2.787
41

1



42 # detrend houly sea level
43 v = 1:length(x)
44 dfit = lm(formula = x ~ v)
45 ll = x - dfit$coefficients[2]*v
46

47 # daily max from hourly
48 xgt86 = x[index(x)>="1986-01-01 00:00:00 EST"]
49 DailyMaxSL <- apply.daily(xgt86, max,na.rm=TRUE)
50

51 # Write to CSV file
52 df = data.frame(index(DailyMaxSL),DailyMaxSL)
53 write.table(df,"SL_daily_max_1986-2015.csv",sep = ",",row.names=FALSE)
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slr_by_year.R

setwd("/Users/dmr/Dropbox/Courses/CEE460/proj/preproc")
library(’zoo’)

dat = read.table("slr_atlantic_city_2000-2100_rcp85.csv",
sep=",",header=TRUE)

# interpolate values between time slices
z <- zoo(dat)
zaprox = na.spline(z)

# write interpolated values to a text file
write.zoo(zaprox,

file="slr_atlantic_city_2000-2100_filled_rcp85.csv",sep=",")

# plot interpolated values

pdf(’slr_atlantic_city_2000-2100.pdf’,width=6,height=4,
paper=’special’)

plot(dat$year,zaprox$q0.5,type="n",ylim=c(0,220),xlab="Year",
ylab="RSL (cm)",
main = "Atlantic City, NJ")

mtext("RCP 8.5")
lines(dat$year,zaprox$q0.5,lw=1,lty=3) # 0.5
lines(dat$year,zaprox$q5,lw=2,lty=3) # 0.5
lines(dat$year,zaprox$q17,lw=3,lty=2)
lines(dat$year,zaprox$q50,lw=4)
lines(dat$year,zaprox$q83,lw=3,lty=2)
lines(dat$year,zaprox$q95,lw=2,lty=3)
lines(dat$year,zaprox$q99.5,lw=1,lty=3) # 0.5
legend(2000,220,c("0.5th/99.5th","5th/95th","17th/83rd","50th"),

lty=c(3,3,2,1),lwd=c(1,2,3,4))
dev.off()

pdf(’slr_atlantic_city_2000-2050.pdf’,width=6,height=4,
paper=’special’)

plot(dat$year,zaprox$q0.5,type="n",ylim=c(0,80),xlab="Year",
ylab="RSL (cm)",
main = "Atlantic City, NJ",xlim=c(2000,2050))

mtext("RCP 8.5")
lines(dat$year,zaprox$q0.5,lw=1,lty=3) # 0.5
lines(dat$year,zaprox$q5,lw=2,lty=3) # 0.5
lines(dat$year,zaprox$q17,lw=3,lty=2)
lines(dat$year,zaprox$q50,lw=4)
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lines(dat$year,zaprox$q83,lw=3,lty=2)
lines(dat$year,zaprox$q95,lw=2,lty=3)
lines(dat$year,zaprox$q99.5,lw=1,lty=3) # 0.5
legend(2000,80,c("0.5th/99.5th","5th/95th","17th/83rd","50th"),

lty=c(3,3,2,1),lwd=c(1,2,3,4))
dev.off()
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slr_gpd_routine.R

setwd("/Users/dmr/Dropbox/Courses/CEE460/proj/preproc")

library(evd)
library(extRemes)

u = 0.6 # threshold

# Open historical record of daily max water level (w.r.t MHW)
dat = read.table("SL_daily_max_1986-2015.csv",sep=",",header=TRUE)

pdf(’surgehist_atlantic_city.pdf’,width=6,height=4,paper=’special’)
hist(dat$DailyMaxSL,breaks=20,xlim = c(0.35,1.4),xlab="Daily Height above MWH (m)",

main="Atlantic City, NJ")
mtext("1986-2015")
text(0.95,1800,"Threshold = 0.6m above MHW")
abline(v=0.6,lty=2,lwd=3)
dev.off()

# Decluster daily observations so that multiple
# observations from the same event are excluded
# This makes the data independent for MLE

# decluster above 0.3 m and decluster run length of 2 days
declusterSL = decluster(dat$DailyMaxSL,threshold = 0.3,clusterfun = "max",r=2)

# After declustering
hist(declusterSL,breaks=20,xlim = c(0.6,1.4),ylim=c(0,500),xlab="Daily Height above MWH (m)",

main="Tide Gauge at Atlantic City, NJ (1979-2015)")

tcplot(declusterSL, tlim = c(0,.5), model = "gpd",npp = 365.25)
tcplot(dat$DailyMaxSL, tlim = c(0,.5), model = "gpd",npp = 365.25)

dmax.fit <- fpot(declusterSL, threshold = .6, model = "gpd",npp = 365.25)

sigma = dmax.fit$param[1] # scale
xi = dmax.fit$param[2] # shape
std_sigma = 2*dmax.fit$std.err[1]
std_xi = 2*dmax.fit$std.err[2]
prob_above = dmax.fit$pat

plot(dmax.fit,which=3)

# calculate the return level as a function of the return period (years)
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i = 0

zp_lw = NULL
zp = NULL
zp_up = NULL

for (T in 1:10001){

# shape .ne. 0
# a = (-(prob_above/(log(1-1/T))))^(xi-std_xi)
# zp_lw[i] = ((sigma-std_sigma)/(xi-std_xi))*(a - 1) + u

# a = (-(prob_above/(log(1-1/T))))^xi
# zp[i] = (sigma/xi)*(a - 1) + u

# a = (-(prob_above/(log(1-1/T))))^(xi+std_xi)
# zp_up[i] = ((sigma+std_sigma)/(xi+std_xi))*(a - 1) + u

# shape ~ 0

a = -log(1-1/T)/(365.25*prob_above)
zp_lw[i] = -(sigma-std_sigma)*log(a) + u

a = -log(1-1/T)/(365.25*prob_above)
zp[i] = -(sigma)*log(a) + u

a = -log(1-1/T)/(365.25*prob_above)
zp_up[i] = -(sigma+std_sigma)*log(a) + u

i = i + 1
}

# plot historical return levels
x <- seq(1,10000,1)

pdf(’ac_hist_surge_returnlvl.pdf’,width=6,height=4,paper=’special’)
plot(x,zp, type="n",xaxt="n",log="x",ylim=c(0.5,2.5), ylab="Surge above MWH (m)",

xlab="Return Period (Years)", main="Atlantic City, NJ",
panel.first=abline(v=c(2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100,

200,300,400,500,600,700,800,900,1000,2000,3000,4000,
5000,6000,7000,8000,9000,10000),h=c(.5,1,1.5,2,2.5),

lty=3,col="gray"))
mtext("1986-2015")
at.x <- outer(1:9, 10^(0:4))
lab.x <- ifelse(log10(at.x) %% 1 == 0, at.x, NA)
axis(1, at=at.x, labels=lab.x, las=1)
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lines(zp_lw,lty=2)
lines(zp,lty=1)
lines(zp_up,lty=2)
legend("topleft", expression(paste("2",sigma," from EVA",sep="")),

lty=c(2), bty=’n’, cex=1.0)
dev.off()

7



slr_by_decade.R

setwd("/Users/dmr/Dropbox/Courses/CEE460/proj/preproc")
library(RColorBrewer)

storm = read.table("SL_daily_max_1986-2015.csv",sep=",",header=TRUE)
lsl = read.table("LSLprojMCMC_180_rcp85.csv",sep=",",header=TRUE)/1000 # to m

# Expected RSL by decade
rsl = NULL

# sample mean approximates the expected value
rsl[1] = mean(lsl$X2000)
rsl[11] = mean(lsl$X2010)
rsl[21] = mean(lsl$X2020)
rsl[31] = mean(lsl$X2030)
rsl[41] = mean(lsl$X2040)
rsl[51] = mean(lsl$X2050)
rsl[61] = mean(lsl$X2060)
rsl[71] = mean(lsl$X2070)
rsl[81] = mean(lsl$X2080)
rsl[91] = mean(lsl$X2090)
rsl[101] = mean(lsl$X2100)

# interpolate expected RSL between decades
zfull <- zoo(rsl)
rsl = na.approx(zfull)

prob_above = 0.01557808 # probability above GPD Threshold
u = 0.6 # threshold in meters
sigma = 0.137974 # shape parameter

z2000 = NULL
z2010 = NULL
z2020 = NULL
z2030 = NULL
z2040 = NULL
z2050 = NULL
z2060 = NULL
z2070 = NULL
z2080 = NULL
z2090 = NULL
z2100 = NULL

for (i in 1:10000){
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# 2000
q = runif(1)
a = -log(1-q)/(365.25*prob_above)
h = -(sigma)*log(a) + u
q = runif(1)
s = as.numeric(quantile(lsl$X2000,probs=q))
z2000[i] = s + h

# 2010
q = runif(1)
a = -log(1-q)/(365.25*prob_above)
h = -(sigma)*log(a) + u
q = runif(1)
s = as.numeric(quantile(lsl$X2010,probs=q))
z2010[i] = s + h

# 2020
q = runif(1)
a = -log(1-q)/(365.25*prob_above)
h = -(sigma)*log(a) + u
q = runif(1)
s = as.numeric(quantile(lsl$X2020,probs=q))
z2020[i] = s + h

# 2030
q = runif(1)
a = -log(1-q)/(365.25*prob_above)
h = -(sigma)*log(a) + u
q = runif(1)
s = as.numeric(quantile(lsl$X2030,probs=q))
z2030[i] = s + h

# 2040
q = runif(1)
a = -log(1-q)/(365.25*prob_above)
h = -(sigma)*log(a) + u
q = runif(1)
s = as.numeric(quantile(lsl$X2040,probs=q))
z2040[i] = s + h

# 2050
q = runif(1)
a = -log(1-q)/(365.25*prob_above)
h = -(sigma)*log(a) + u
q = runif(1)
s = as.numeric(quantile(lsl$X2050,probs=q))
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z2050[i] = s + h

# 2060
q = runif(1)
a = -log(1-q)/(365.25*prob_above)
h = -(sigma)*log(a) + u
q = runif(1)
s = as.numeric(quantile(lsl$X2060,probs=q))
z2060[i] = s + h

# 2070
q = runif(1)
a = -log(1-q)/(365.25*prob_above)
h = -(sigma)*log(a) + u
q = runif(1)
s = as.numeric(quantile(lsl$X2070,probs=q))
z2070[i] = s + h

# 2080
q = runif(1)
a = -log(1-q)/(365.25*prob_above)
h = -(sigma)*log(a) + u
q = runif(1)
s = as.numeric(quantile(lsl$X2080,probs=q))
z2080[i] = s + h

# 2090
q = runif(1)
a = -log(1-q)/(365.25*prob_above)
h = -(sigma)*log(a) + u
q = runif(1)
s = as.numeric(quantile(lsl$X2090,probs=q))
z2090[i] = s + h

# 2100
q = runif(1)
a = -log(1-q)/(365.25*prob_above)
h = -(sigma)*log(a) + u
q = runif(1)
s = as.numeric(quantile(lsl$X2100,probs=q))
z2100[i] = s + h

}

# save flood heights to CSV file
df = data.frame(z2000,z2010,z2020,z2030,z2040,z2050,z2060,z2070,z2080,z2090,z2100)
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write.table(df,"SL_surge_daily_max_2000-2100.csv",sep = ",",row.names=FALSE)

col = brewer.pal(9,"YlGnBu")

# plot historical and projected CDFs
pdf(’ac_proj_surge_cdf.pdf’,width=8,height=6,paper=’special’)
plot(ecdf(z2000),xlim=c(0.5,3.5),col=col[2],lwd=3,main="Atlantic City, NJ",

xlab="Surge above MWH (m)",ylab="Cumulative Probability")
mtext("RCP 8.5")
lines(ecdf(z2020),col=col[3],lwd=3)
lines(ecdf(z2030),col=col[4],lwd=3)
lines(ecdf(z2050),col=col[6],lwd=3)
lines(ecdf(z2070),col=col[7],lwd=3)
lines(ecdf(z2100),col=col[9],lwd=3)
legend(3,.5,c("2000","2020","2030","2050","2070","2100"),

lwd=c(3,3,3,3,3,3),col=c(col[2],col[3],col[4],col[6],col[7],col[9]))
dev.off()

z2000 = NULL
z2020 = NULL
z2030 = NULL
z2050 = NULL
z2070 = NULL
z2100 = NULL

exp2000 = sum(as.numeric(quantile(lsl$X2000,probs=seq(0.0001,1,.0001))))/10000
exp2020 = sum(as.numeric(quantile(lsl$X2020,probs=seq(0.0001,1,.0001))))/10000
exp2030 = sum(as.numeric(quantile(lsl$X2030,probs=seq(0.0001,1,.0001))))/10000
exp2050 = sum(as.numeric(quantile(lsl$X2050,probs=seq(0.0001,1,.0001))))/10000
exp2070 = sum(as.numeric(quantile(lsl$X2070,probs=seq(0.0001,1,.0001))))/10000
exp2100 = sum(as.numeric(quantile(lsl$X2100,probs=seq(0.0001,1,.0001))))/10000

i = 0
for (T in 1:10001){

a = -log(1-1/T)/(365.25*prob_above)
z2000[i] = -(sigma)*log(a) + u + exp2000
z2020[i] = -(sigma)*log(a) + u + exp2020
z2030[i] = -(sigma)*log(a) + u + exp2030
z2050[i] = -(sigma)*log(a) + u + exp2050
z2070[i] = -(sigma)*log(a) + u + exp2070
z2100[i] = -(sigma)*log(a) + u + exp2100
i = i + 1

}
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# plot historical and projected return levels
x <- seq(1,10000,1)

pdf(’ac_proj_surge_returnlvl.pdf’,width=8,height=6,paper=’special’)
plot(x,z2100, type="n",xaxt="n",log="x",ylim=c(0.5,3.5), ylab="Surge above MWH (m)",

xlab="Return Period (Years)", main="Atlantic City, NJ",
panel.first=abline(v=c(2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100,

200,300,400,500,600,700,800,900,1000,2000,3000,4000,
5000,6000,7000,8000,9000,10000),h=seq(1,4,0.5),

lty=3,col="gray"))
mtext("RCP 8.5")
at.x <- outer(1:9, 10^(0:4))
lab.x <- ifelse(log10(at.x) %% 1 == 0, at.x, NA)
axis(1, at=at.x, labels=lab.x, las=1)
lines(z2000,lwd=3,col=col[2])
lines(z2020,lwd=3,col=col[3])
lines(z2030,lwd=3,col=col[4])
lines(z2050,lwd=3,col=col[6])
lines(z2070,lwd=3,col=col[7])
lines(z2100,lwd=3,col=col[9])
legend(1,3.7,c("2000","2020","2030","2050","2070","2100"),

lwd=c(3,3,3,3,3,3),col=c(col[2],col[3],col[4],col[6],col[7],col[9]),
horiz=TRUE,bty="n")

dev.off()
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damages.R

setwd("/Users/dmr/Dropbox/Courses/CEE460/proj/preproc")

library(’RColorBrewer’)
library(’hazus’)
library(’zoo’)

# Retrieve depth-damage function
fl_dept = extract_hazus_functions(func_type = "depth", long_format = FALSE)
exp_dam = as.numeric(fl_dept[56,10:33])*.01 # Two story residential w/ contents
flood_depth = 1:length(exp_dam)*.3048 # feet to meters

# plot depth-damage function
col = colorRampPalette(brewer.pal(9,"Blues"))(30)

pdf(’depth-damage.pdf’,width=6,height=6,paper=’special’)
mp = barplot(exp_dam,axes=F,ylab="Expected Loss",xlab="Flood Depth (m)",col=col,

main="HAZUS Depth-Damage Function")
mtext("Two Story Residential Home with Contents")
axis(1,at=c(0,4,8,12,16,20,24,28),labels=c("0","1","2","3","4","5","6","7"))
axis(2,seq(0,1,.2))
dev.off()

mhw = 2.787 # Mean High Water (meters)
nav88 = 2.308 # North American Vertical Datum of 1988 (meters)

lsl = read.table("LSLprojMCMC_180_rcp85.csv",sep=",",header=TRUE)/1000 # to m

prob_above = 0.01557808
u = 0.6
sigma = 0.137974

# Expected RSL by decade
rsl = NULL

rsl[1] = mean(lsl$X2000)
rsl[11] = mean(lsl$X2010)
rsl[21] = mean(lsl$X2020)
rsl[31] = mean(lsl$X2030)
rsl[41] = mean(lsl$X2040)
rsl[51] = mean(lsl$X2050)
rsl[61] = mean(lsl$X2060)
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rsl[71] = mean(lsl$X2070)
rsl[81] = mean(lsl$X2080)
rsl[91] = mean(lsl$X2090)
rsl[101] = mean(lsl$X2100)

# interpolate expected RSL between decades
zfull <- zoo(rsl)
rsl = na.approx(zfull)

# 100,000 Monte Carlo samples of joint RSL and Surge distribution
zp = matrix(0, 101, 100000)

for (j in 1:101){
i = 0
print(1999+j)

for (T in 1:100001){
p = runif(1)
a = -log(1-p)/(365.25*prob_above)
zp[j,i] = -(sigma)*log(a) + u + rsl[j] + mhw - nav88
i = i + 1

}
}

nsim = 100000
home_elev = 3 # meters above NAV88
home_val = 725000 # USD (est. from Zillow.com)

# determine probability home will be flooded
p = NULL

for (j in 1:101){
p[j] = 1 - sum(zp[j,]<home_elev)/nsim

}

x = seq(2000,2100,1)
pdf(’ac_prob_flood.pdf’,width=8,height=6,paper=’special’)
plot(x,p,log="y",yaxt="n",ylab="Flood Probability",xlab="Year",

panel.first=abline(h=c(1e-05,2e-05,3e-05,4e-05,5e-05,6e-05,7e-05,8e-05,9e-05,
1e-04,2e-04,3e-04,4e-04,5e-04,6e-04,7e-04,8e-04,9e-04,
1e-03,2e-03,3e-03,4e-03,5e-03,6e-03,7e-03,8e-03,9e-03,
1e-02,2e-02,3e-02,4e-02,5e-02,6e-02,7e-02,8e-02,9e-02,
1e-01,2e-01,3e-01,4e-01,5e-01,6e-01,7e-01,8e-01,9e-01),
v=seq(2000,2100,20),

lty=3,col="gray"),main = "Probability of Flooding (3m above MSL)")
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mtext("Linwood, NJ; RCP 8.5")
aty = c(1e-05,1e-04,1e-03,1e-02,1e-01)
atylab = c(-5,-4,-3,-2,-1)
labels <- sapply(atylab,function(i)
as.expression(bquote(10^ .(i)))

)
axis(2, at=aty,labels = labels)
dev.off()

# Calcuate expected annual damages
ead = NULL
for (j in 1:101){
xx = zp[j,] - home_elev
counts = as.numeric(table(cut(xx, flood_depth)))
exp_loss = (counts[1]*(1-exp_dam[1])*home_val + counts[2]*(1-exp_dam[2])*home_val +

counts[3]*(1-exp_dam[3])*home_val + counts[4]*(1-exp_dam[4])*home_val)/100000

# arrival rates of flood events
lambda = 365*p[j] # frequency of events where home elevation is flooded
ead[j] = lambda*exp_loss
}

# plot expected annual damage
x = seq(2000,2100,1)
pdf(’ac_ead.pdf’,width=8,height=6,paper=’special’)
plot(x,ead,log="y",yaxt="n",ylab="Expected Annual Damage ($)",xlab="Year",

panel.first=abline(h=c(10,20,30,40,50,60,70,80,90,100,
200,300,400,500,600,700,800,900,1000,
2000,3000,4000,5000,6000,7000,8000,9000,10000,
20000,30000,40000,50000,60000,70000,80000,90000,100000),
v=seq(2000,2100,20),
lty=3,col="gray"),main = "Two Story Residence (3m above MSL)")

mtext("Linwood, NJ; RCP 8.5")
aty = c(10,100,1000,10000,100000)
atylab = c(1,2,3,4,5)
axis(2, at=aty,labels = c("$10","$100","$1,000","$10,000","$100,000"))
dev.off()
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