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ABSTRACT

The Message Passing Interface (MPI) library was used to construct a portable par-

allel variant of CALPUFF, a source-receptor puff dispersion model, to accelerate

numerical calculations. Gridded receptor sampling in the serial CALPUFF model

accounts for roughly 99% of the wall clock time during a typical simulation. The

parallel version of CALPUFF implements a 1-dimensional decomposition of all sam-

pling receptors across all active processor elements to distribute the workload over

multiple compute nodes. A parallel I/O method was also implemented to limit the

communication bottlenecks between processors during file writing operations that are

known to cause performance degradation. The capabilities of the parallel CALPUFF

model are demonstrated in a 90-day simulation with 10,000 area sources, which could

not be performed with the current U.S. Environmental Protection Agency (EPA)

approved version of serial CALPUFF (version 5.8—level 070623) and currently avail-

able computing hardware. Performance improvements between the parallel and serial

CALPUFF variants exceed a factor of 16 for simulations with 100 area sources and

using 52 processor elements. All results between serial and parallel CALPUFF are

found to be equivalent within numerical tolerances, a necessity for continued EPA

endorsements. If further performance improvements are needed, the use of a dynamic

domain decomposition is suggested to maximize CPU occupancy across all process

elements when receptors are not uniformly distributed throughout a domain and/or

when receptors are moving within a domain. The parallel CALPUFF model will be

a useful tool for regulatory modeling when the number of receptors and/or emission

sources is too great to complete a simulation in a reasonable amount of time using

the serial CALPUFF model.
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EXECUTIVE SUMMARY

Background.

The CALPUFF model tracks emissions from point sources through a simulation of
atmospheric dispersion and deposition. The model accounts for time-variation in the
emissions rate and meteorological conditions by separately tracking discrete subsets
(PUFFs) of the total emissions through the atmospheric simulation. CALPUFF has
been used previously to support a number of regulatory decisions worldwide. As the
size and complexity of the cutting edge science questions has expanded, the compu-
tational limits of CALPUFF have reduced the usefulness of the program. In order
to support future regulations, there is a need to optimize the CALPUFF modeling
system computational code such that performance is increased.

Methods.

A Fortran profiling tool was used to identify routines and algorithms in CALPUFF
that may be candidates for acceleration during representative simulations based on
data from past regulatory studies in California. Alternative parallel algorithms that
may improve computational efficiency were proposed and implemented. The scal-
ability and performance of the parallel CALPUFF model was tested using varying
numbers of emission sources and simulation times. The numerical accuracy of the
parallel CALPUFF model was analyzed using appropriate statistical metrics.

Results.

Using scenarios from past regulatory studies in California demonstrates that the sam-
pling of the puffs in the area of the receptors accounts for roughly 99% of the total
simulation time in the serial CALPUFF model. Using the MPICH-2 library, a 1-
dimensional decomposition of all receptors was implemented across all active pro-
cessor elements where each process element samples only at its assigned receptors.
Parallel output routines were also implemented to eliminate communication bottle-
necks that can degrade performance during file writing procedures. For an 8-day
simulation with 100 sources, the parallel CALPUFF model is >16 times faster than
the serial CALPUFF model with an efficiency of 35-75% when 2-56 processors are
used with standard Gbps networking. Furthermore, model simulations encompassing
tens of thousands of sources are possible with the parallel CALPUFF model; these
problems are not practical using the serial CALPUFF model with commodity hard-
ware at the present time. Concentrations predicted by the parallel CALPUFF model
are equivalent to the serial CALPUFF model within numerical tolerances.
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Conclusions.

A strategy for computational acceleration of CALPUFF using the MPICH-2 library
was proposed and implemented. The parallel CALPUFF model is >16 times faster
than the serial CALPUFF model under typical problem sizes. The parallel CALPUFF
model has the capability to simulate tens of thousands of emissions sources, which
is a problem size beyond the capabilities of the serial CALPUFF model at present
time. Predictions from the parallel CALPUFF model are equivalent to predictions
from the serial CALPUFF model within numerical tolerances. Future improvements
to the parallel CALPUFF model could include a dynamic domain decomposition
that would optimize the amount of work that each processor is assigned. The parallel
CALPUFF model should be a useful tool for regulatory modeling when the number of
receptors and/or emission sources is too great to complete a simulation in a reasonable
amount of time using the serial model variant.
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CHAPTER I

Introduction

1.1 Introduction

Atmospheric reactive chemical transport models are mathematical representations of

pollutant dynamics commonly used on urban (˜104 km2) to regional (˜106 km2) scales

with horizontal resolutions of 4-36km to predict how chemical species concentrations

change in response to changes in emissions. These models, frequently referred to

as air quality models, are useful in determining and evaluating emissions abatement

strategies to comply with air quality standards.

The treatment of atmospheric phenomena in 3-dimentional reactive chemical trans-

port models has evolved considerably over past decades. As the understanding of

the underlying chemical and physical processes in the atmosphere continues to grow,

there has been a persistent desire to include increased detail in air quality models in

pursuit of accurate results that match observed behavior in the atmosphere. These

ambitions have proven to be a grand challenge [Levin, 1989] to modelers as compu-

tational constraints, notably central processing unit (CPU) speed, have placed limits

on certain air quality model parameterizations such as the spatial domain size and

horizontal and vertical resolution, simulation length, and the detail of the chemistry

and physics that can be included in calculations for simulations to proceed faster

than real time [Seinfeld, 1989]. Traditionally, these parameterizations and settings

have been simplified to keep calculations tractable. However, many model developers

agree that the use of massive parallel computing architecture is a promising solution
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to meet the ever-growing computational demands of air quality modeling [Zlatev,

1995].

Previous studies have extensively shown that air quality models are well suited for

parallelization [Dabdub and Seinfeld, 1994; 1996; Elbern, 1997; Kumar et al., 1997;

Molnr Jr et al., 2010; Saylor and Fernandes, 1993]. Furthermore, the current gen-

eration of 3-dimensional gridded Eulerian air quality models (e.g. the Community

Multi-scale Air Quality model, or CMAQ; the Weather Research and Forecasting

Chemistry model, or WRF-Chem; the Comprehensive Air Quality Model with Exten-

sions, or CAMx) have all demonstrated performance benefits from utilizing massively

parallel computing resources [Emery et al., 2008; Grell et al., 2005; Tonse and Brown,

2007].

Gaussian dispersion models (e.g. the American Meteorological Society/EPA Regula-

tory Model Improvement Committee Model, or AERMOD; the California Puff model,

or CALPUFF) represent a subset of the processes that occur in the atmosphere with

emphasis placed on advection and diffusion of pollutants subject to simple or no

chemical reaction. As such, Gaussian dispersion models are much faster than full air

quality models that simulate hundreds to thousands of chemical reactions. Gaussian

dispersion models have generally not been rewritten as parallel programs to date.

Recently, a goods movement study carried out in California required the simulation

of several hundred emissions sources over one year using a Gaussian dispersion model

[CARB, 2008]. The computational burden of this problem was too large for a single

model application, and so a crude parallel approach was used that involved breaking

up the problem into discrete sub-problems that could each be simulated separately.

The additional overhead in this manual decomposition resulted in significant effort.

The use of parallelism in these popular air quality tools would significantly improve
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the amount of detail (e.g. number of emission sources, number of sampling receptors)

that can be simulated in a modeling scheme under both a reasonable time allowance

and under CPU and memory limitations.

1.2 The CALPUFF modeling system

CALPUFF [Bennett et al., 2002; Scire et al., 2000a], is a multi-layer, multi-species,

non-steady-state puff dispersion model that is a component of the CALPUFF model-

ing system that also includes a meteorology pre-processing program, CALMET, and

a post-processing utility, CALPOST. The CALPUFF dispersion model simulates the

spatial (3-dimensional) and temporal effects of meteorology on pollutant dispersion,

chemical transformation, and removal processes. The chemical conversion mecha-

nism is quasi-linear and includes treatment for SO2, SO
2−
4 , NOx, HNO3, NO

−
3 ,

NH3, PM10, PM2.5, and inert pollutants. CALPUFF includes a resistance-based dry

deposition removal model for gases and particulate matter and uses both scavenging

coefficients and precipitation rates to calculate wet deposition. Emission sources may

be characterized as point, line, volume, and area sources. The model includes algo-

rithms for simulating the effects of sub-grid scale features such as complex terrain

and building downwash. Because of the non-steady state structure of CALPUFF,

causal effects and dynamic trajectories can be modeled producing results that are

often more realistic than other EPA approved regulatory models, such as AERMOD.

The EPA has recommended the use of CALPUFF for source-receptor distances of

50 km to several hundred kilometers with the regulatory default options selected in

the CALPUFF control file, but concedes that CALPUFF may be used on a case-by-

case basis given that certain criteria are met (see section 3.2 of U.S. EPA [2005]).

CALPUFF has been used in numerous studies including those that assess the health

effects of emissions reductions [Levy et al., 2002] and to estimate population exposure

to power plant effluence [Zhou et al., 2003]. As of December 2012, the EPA recom-
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mends the use of CALPUFF version 5.8, level 070623.

CALPUFF produces hourly pollutant concentrations for each modeled species, along

with wet and dry deposition fluxes. Concentrations and fluxes are sampled at grid-

ded, non-gridded discrete, and sub-grid scale complex terrain receptors. CALPUFF

places no limitations on the maximum number of sources or receptors that can be

modeled, and these and other modeled parameters are set at the model compile time.

Drastically increasing both the number of emission sources and pollutant receptors

for a CALPUFF simulation presents a computational challenge that can be best met

with implementing parallel architecture that distributes the models work load over

several processing elements.

Previous published attempts to accelerate the computational performance of CALPUFF

have used parallel tools such as graphics processing units (GPUs) and the Open Mul-

tiprocessing (OpenMP) application program interface to accelerate sampling at only

CALPUFFs gridded receptors [Cremades et al., 2010; Suk-Hyun et al., 2011]. How-

ever, these attempts have either failed to produce consistent results between sequen-

tial and parallel variants [Cremades et al., 2010] or consistency between results was

not assessed [Suk-Hyun et al., 2011], a necessity to ensure that EPA model endorse-

ments remain. In this study, performance enhancement is explored by implementing

a distributed memory message passing interface (MPI)[Gropp et al., 1994] version

of CALPUFF with the goal of producing consistent results between both serial and

parallel model variants.
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1.3 The Message Passing Interface

The Message Passing Interface - Chameleon 2 (MPICH2) library [Gropp, 2002] is an

implementation of the MPI standard (both MPI-1 and MPI-2). Like OpenMP1, the

MPICH2 library allows developers to take advantage of distributed memory across a

large number of CPUs. OpenMP is also known to be the least involved method to

increase performance for the model developer as the compiler will often solely deter-

mine where to perform parallel calculations. With MPICH2, the programmer must

decide where to insert the proper subroutines in the code for communication between

processing elements. Although this typically makes parallel model development more

involved than OpenMP, it allows for greater control over the parallel architecture

compared to OpenMP. While start-up hardware costs may be much less, model ac-

celeration using GPUs is the most involved performance improvement option due to

the porting of sometimes lengthy code streams to run on the Compute Unified Device

Architecture (CUDA) developed by NVIDIA R©.

The MPICH2 library is designed in a modular, user-friendly format, and has proven to

be a powerful, scalable, and portable performance optimization solution in a variety

of science and engineering applications [Jin et al., 2011]. Additionally, the MPICH2

library includes a Fortran interface that pairs well with the CALPUFF modeling sys-

tem that is written with Fortran77. This eliminates any need to meticulously port

the CALPUFF code to take advantage of the MPICH2 library which is composed in

the C language. In this report, a methodology is presented for improved computa-

tional performance of the EPA recommended version of CALPUFF (version 5.8—level

070623), a multi-layer, multi-species, non-steady-state puff dispersion model, through

the implementation of a parallel calculation framework with the MPICH2 library, a

message passing interface.

1Website for OpenMP tools, http://www.openmp.org
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In section 2 of this report we introduce a test scenario, profile this simulation, discuss

profiling results from the sequential variant of CALPUFF and identify performance

bottlenecks that may be candidates for parallelization. We outline and implement a

strategy for increased computational performance in section 3. In section 4, we ap-

ply our parallel CALPUFF variant to a test case scenario, compare profiling results

between the serial and parallel variants, and verify consistency in resultant pollutant

concentrations. In section 5 we offer suggestions for future improvement in the com-

putational performance of the parallel variant of CALPUFF. Finally, we conclude our

findings in section 6.
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CHAPTER II

Profiling

In order to identify performance hurdles within the CALPUFF modeling structure,

a dynamic profiling analysis was performed with the PGPROF R© profiler. The

PGPROF R© profiler gathers timing and calling information from the subroutines and

functions from the model as it runs. To run the PGPROF R© profiler, the model code

must be specially compiled with certain profiling flags. Although the data collection

during the profiling may add some overhead to the model execution, it is anticipated

that the objective of finding the most computationally intensive routines will likely

not be hindered due to the added overhead mostly affecting infrequently used func-

tions and routines and the long duration of the profiling time (Section 2.1). It is

important to note that profiling results will significantly vary with the manner in

which the model is configured to run in the accompanying control file.

2.1 Description of an 8-day test case scenario

In this study, we use a moderately-sized test case simulation with CALPUFF to

demonstrate proof-of-concept. Our test simulation uses 3-dimensional gridded hourly

weather fields (e.g. wind, temperature), along with 2-dimensional derived hourly

fields and variables (e.g. mixing depth, Monin-Obukov length, precipitation rate)

from January 1 to December 31 2002 that are prepared by the CALPUFF modeling

system meteorology pre-processor, CALMET (v. 5.53a ) [Scire et al., 2000b]. For

the CALMET simulation, we use a 1092 km × 1092 km model domain (figure 2.1)
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at 4 km × 4 km horizontal resolution with 12 vertical layers specified from the sur-

face (0 m) up to a height of 5 km. This domain is based on Lambert Conformal

Conic projection and has been used by ARB for previous modeling simulations [e.g.

CARB, 2008]. We use 3-dimensional prognostic meteorology generated over the west-

ern US by the fifth-generation Penn State/NCAR mesoscale model (MM5) [Grell et

al., 1995], and, when available, use over-land surface (10-m) meteorological data from

279 observation stations. The horizontal resolution of the MM5 prognostic data was

12 km × 12 km. Gridded terrain elevation data are derived from 3-arc second digital

elevation models by the United Stated Geological Survey and have a resolution of 90

m × 90 m. We use 14 distinct land-use categories derived from USGS gridded data

sets. (For CALMET model control file, see Table 2 of Appendix E1, CARB, 2008)

CALPUFF is used to simulate pollutant dispersion and removal over an 8-day simula-

tion (04/01/2002 00:00 PST to 04/08/2002 23:00 PST) using diesel and diesel-electric

powered ocean-going freight vessel emissions data from 2005 represented as 100 area

sources [CARB, 2008]. The domain used by the CALPUFF simulation was identi-

cal to that of the CALMET domain (figure. 2.1). At the beginning of each hourly

time-step, SO2, NOx, PM10 (in this simulation representing diesel particulate mat-

ter), and NH3 are emitted from each area source as puffs. Pollutant concentrations

were sampled each hour at all gridded receptors on a 273 receptor × 273 receptor

grid (74,529 total receptors); sampling in this test scenario was not done at discrete,

non-gridded or complex terrain receptors. We model SO2, NOx, HNO3, and NH3

gas chemistry and sulfate, nitrate and PM10 aerosol chemistry and physics with the

MESOPUFF II chemical mechanism [Scire et al., 1984a; b]. Both wet and dry de-

position of particles and gases are modeled, however aqueous-phase transformation

of SO2 and NOx is not modeled. The ISC-type terrain adjustment method is used

and partial plume penetration of elevated inversions is not allowed. The line printer
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Figure 2.1: The extent of the CALMET and CALPUFF modeling domain used in
this study showing terrain elevation (m) derived from 3-arc second digital
elevation models by the United Stated Geological Survey with a resolution
of 90 m × 90 m. Lambert Conic Conformal x- and y- coordinates (km) are
relative to the domain origin at 37oN 120.5oW. Reprinted with permission
from the California Air Resources Board.
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output option was turned off to improve model performance. The remaining settings

in the CALPUFF control file were configured with the EPA recommended options

(see CALPUFF control file in auxiliary material). This 100 source, 8-day test case is

chosen because it is computational demanding for the serial CALPUFF variant (˜0.5

hrs. to simulate 1 day), and we hypothesize that a longer profiling duration will yield

more accurate timing information from the models subroutines. A variety of weather

conditions were present over the modeling domain during this 8-day episode that may

make this an interesting, roughly week-long, testing period.

2.2 Profiling results from test scenario

The initial profiling results performed with PGPROF R© on an Intel R© CoreTM 2 Quad

Q6600 processor (8MB Cache, 2.40 GHz, 1066 MHz FSB) with 4GB DDR3 SDRAM2

revealed that the calculations within the subroutine CALCPF accounted for around

99% of the total simulation time (figure 2.2).

Previous studies have profiled the sequential CALPUFF code and have additionally

concluded that subroutine CALCPF is the limiting performance hurdle for simulations

with the EPA recommended default settings selected in the control file [Cremades et

al., 2010; Suk-Hyun et al., 2011]. A brief analysis of the CALPUFF modeling struc-

ture (fig. 2.3a) revealed that the subroutine CALCPF lies within the subroutine

COMP, a subroutine that encompasses nearly all of the models calculations during

each hourly time step. The outer-most loop in the subroutine COMP iterates over

each hour of the simulation (fig. 2.3b). For each hour, a loop iterates through each

active puff on the computational grid and performs calculations for dispersion, depo-

sition, and chemistry. Further imbedded within the puff loop is subroutine CALCPF,

in which a loop is performed over receptors, of gridded, non-gridded discrete, or sub-

2Note: All testing and profiling in this report was performed on a 400-node Linux Beowulf
cluster maintained by, and located at, the University of California, Davis. Machine specifications
are provided in this report when performance results are given.
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Total Time
41,188.56 sec.

MAIN
0.2790 sec - 0%

COMP
12.8259 sec - 0%

CALCPF
7,144.92 sec - 17%

PUFRECS
5,184.97 sec – 13%

SIGTY
8,189.1 sec – 20%

PFSAMP
3,416.53 sec – 8%

ASDF
2,421.8 sec – 6%

ERFC
3,128.42 sec – 8%

ERFDIF
4,509.44 sec – 11%

PFSCRN
1,433.76 sec – 3%

ERF
1,371.42 sec – 3%

SETCSIG
1,866.04 sec – 5%

SLGFRAC
1,159.2 sec – 3%

CTADJ
824.749 sec – 2%

RDMET
0.0977 sec – 0%

RDR2D
274.818 sec – 1%

Figure 2.2: A subroutine call tree showing profiling results from an 8-day CALPUFF
simulation with 100 area sources with pollutants sampled hourly at 74,529
gridded receptors. Subroutines are only shown if they, or if the subrou-
tines within, contribute at least 1% of the total calculation time. Results
obtained with the PGPROF R© profiler.
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grid scale complex-terrain variety (CTGS) (depending on model setup options in the

control file), to sample information about the concentration and deposition fluxes of

each species modeled.

MAIN

SETUP

COMP

FIN

COMP

Hour loop
DO 1000 NN=1, IARLG

1000 CONTINUE

Puff loop
DO 900 II=1, NPUFFS

900 CONTINUE

Gridded receptor sampling loop
DO 100 ISAMP = IL, IR

DO 100 JSAMP = JB, JT

100 CONTINUE

CALCPF

a.) b.)

Figure 2.3: a.) The three principal CALPUFF subroutines within the main program
body, SETUP, COMP, and FIN; b.) the loop structure within the sub-
routine COMP that includes the hour and puff loops, as well as the call to
subroutine CALCPF and its associated principal loops over all gridded
(shown), non-gridded discrete(not shown), and sub-grid scale complex-
terrain receptors(not shown).

Closer inspection of the CALCPF code reveals that gridded, discrete, and CTGS

receptors are only sampled if they meet certain requirements that render them po-

tentially impacted by the current puff iterate in the puff loop. There is an additional
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screening procedure for gridded receptors that further eliminates the need to iterate

over all gridded receptors for each active puff. Instead of sampling over all 74,529

receptors in the CA domain, the impacted receptors are identified and then sampled

from limits il to ir and jb to jt (See Fortran code in figure 2.4a).

a.

c variables defined:

c nxsam - number of gridded sampling receptors in x-direction

c nysam - number of gridded sampling receptors in y-direction

c jt - location of the top boundary of the grid affected by the puff

c jb - location of the bottom boundary of the grid affected by the puff

c il - location of the left boundary of the grid affected by the puff

c ir - location of the right boundary of the grid affected by the puff

c --- Loop over gridded receptors (sequential CALPUFF v5.8)

do 100 irsamp=il,ir

xr=float(isamp)

do 100 jsamp=jb,jt

yr=float(jsamp)

b.

c variables defined:

c mysamt - top boundary of the 1-dimensional domain decomposition

c mysamb - bottom boundary of the 1-dimensional domain decomposition

13



c --- Loop over gridded receptors (parallel CALPUFF)

if(max(jb,mysamb).GT.min(jt,mysamt)) goto 101

do 100 irsamp=il,ir

xr=float(isamp)

do 100 jsamp=max(jb,mysamb),min(jt,mysamt)

yr=float(jsamp)

Figure 2.4: a) from CALPUFF version 5.8—level 070623; Fortran code that deter-
mines if current puff lies over assigned receptors and code that loops over
impacted gridded receptors; b) from the parallel CALPUFF variant; For-
tran code that determines if current puff lies over assigned receptors and
code that determines sampling limits if the latter condition is valid.
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CHAPTER III

Parallelization approach

3.1 Implementing a 1-dimensional domain decomposition

Previous studies investigating performance improvements in the dynamic modules of

air quality models have proposed differing schemes for disseminating computational

workloads amongst processor elements (e.g. [Dabdub and Manohar, 1997; Elbern,

1997; Kumar et al., 1997]). One common approach is to have the root or master

process distribute the computational work load to all processors using a predefined 1-

or 2- dimensional decomposition of the working domain where each processor element

is assigned tasks or calculations to perform. The number of the resultant decomposi-

tions is often dependent upon the user-specified number of active processing elements.

When using a predefined decomposition, the user will benefit in three ways: (1) the

user will know the processing element that corresponds to each taskuseful knowledge

when debugging, (2) the user can choose a decomposition where the computational

load will be distributed evenly, (3) and the user can select a decomposition where com-

munication overhead is reduced. With each processing element performing calculation

for a fraction of the domain, rather than one processor performing all calculations,

improvements in computational performance should be realized.

As found in section 2, the subroutine CALCPF, and functions and routines within,

are solely responsible for around 99% of the computational load and offers an ideal op-

portunity to improve model performance while maintaining consistent model results.

To achieve this goal, we propose a 1-dimensional decomposition of all active gridded,
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non-gridded discrete, and complex terrain sampling receptors across N -active proces-

sors. Figure 3.1 diagrams this plan for the test scenario used in this study (section

2.1) where 1-dimensional gridded sampling receptor decomposition is implemented

(where each model grid cell is a sampling receptor) using a 273 receptor × 273 re-

ceptor grid that has been divided into four, approximately even, discrete partitions,

where each of the four active processors is to sample only the gridded receptors that

it has been assigned.

At the start of a parallel CALPUFF simulation, each PE determines the total number

of active PEs and then attempts to evenly divide the rows of the sampling receptor

domain and the number of discrete receptors by the total number of active PEs. If

the number of rows in the sampling receptor domain, or the number of discrete re-

ceptors, is not evenly divisible by the number of active PEs, then the root process is

assigned the remaining balance of the rows or discrete receptors. Each process uses

a common block (mpidecomp) to store the upper and lower limit of their assigned

gridded receptor rows (mysamb and mysamt, respectively) and discrete receptors.

When gridded receptor sampling is used, the parallel code in subroutine CALCPF

screens for puffs to sample over the processors assigned receptors. If the algorithm

finds a puff over its receptors, it will sample (See Fortran code in fig. 2.4b and fig.

3.1). In this approach, all processors will perform the same numerical dispersion,

deposition, and chemistry calculations for all active puffs, regardless of the puffs posi-

tion on the grid. This redundancy may seem computationally inefficient, but with the

model settings used in this studys test case, our profiling results (Section 2.2) reveal

that non-receptor sampling calculations account for less than 2% of total simulation

time. We hypothesize that these redundant calculations can likely occur much faster

than if parallelization is implemented because of the known performance penalties
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that are associated with communication bandwidth latency, or the start-up time,

needed to send and receive messages between processing elements. After each hourly

time-step, after all receptors have been sampled for all species and all puffs, species

concentrations and wet and dry deposition fluxes from each process are prepared to

be written to the disk in binary format.

Gridded receptor domain 

Rank = 0 

1 

2 

3 

(1,273) 

(1,1) (273,1) 

(273,273) 

(273,mysamt) 

(273,mysamb) 

(1,mysamt) 

(1,mysamb) 

(ir,jt) 

(ir,jb) (il,jb) 

(il,jt) 

puff 

Figure 3.1: A schematic showing a receptor grid of dimension 273 receptors × 273
receptors decomposed 1-dimensionally across four processors, rank 0
through 3. Limits of the receptor grid for the third process element
(rank 2) are shown in bold. A hypothetical puff and the associated limits
(il,ir and jb, jt) for the puffs affected receptors (see code in fig. 2.4a)
are shown in the northeast corner of the 273 receptor × 273 receptor grid.

3.2 Implementation of parallel I/O routines

3.2.1 Minimizing inter-process communication with parallel output

To minimize or eliminate the need for further communication between processes after

the domain decompositions have been assigned, we further propose the implementa-
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tion of a parallel output routine where each PE writes its concentrations and fluxes to

the disk, rather than passing the data back to the root PE for writing. The EPA rec-

ommended version of CALPUFF includes the capability to produce around a dozen

output files. However, only writing the species concentrations and wet and dry fluxes

require parallel output capability as they are measured at all receptors, which we

decompose across all active PEs; all other output files (e.g. restart file, visibility, fog

plume, 2-dimensional temperature and density) are redundantly generated by each PE

and do not require parallel output. The task of implementing parallel output routines

in CALPUFF is largely constrained by the format of the output files produced by the

serial version of CALPUFF which are designed to be compatible with the companion

CALPUFF post-processing tool, CALPOST (version 6.221—level 082724). All binary

output files produced by the parallel variant of CALPUFF must meet the CALPOST

formatting requirements.

We use an explicit offset file pointer method (MPI FILE WRITE AT) for parallel out-

put that was revealed in testing to be slightly faster than using a shared file pointer

method (MPI FILE WRITE) when writing to a local hard disk (Auxiliary figure A.1).

Poor write speed performance was experienced with the explicit file pointer method

when writing to a redundant array of inexpensive disks (RAID) that did not occur

with the shared file pointer method.

The explicit offset file pointer method, by definition, explicitly specifies where each

PE should write in the output file. We track the file pointer location using an 8-byte

integer variable, mpifilebytes, to hold the active write location (bytes), and we up-

date this variable each time writing to the disk occurs. We use an 8-byte integer type

because the size of CALPUFF binary output file in bytes may exceed the upper limit

of a 4-byte unsigned integer value (232-1 or ˜4.294×109). We simulate Fortran block
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writing with the MPI parallel output functions in each instance that data is written

to disk by first writing the size of the data to be written (in bytes), then writing the

data, and then again writing the size of the data that was written (in bytes).

Before concentrations and wet and dry fluxes are sent to the disk for the first time,

several headers that contain information about the control file settings used in the

CALPUFF simulation are written at the beginning of each binary output file. For

simplicity, we conscript the root PE to write these and all other headers and variables.

At each hour, both the concentration and flux receptors are sampled in parallel and

then prepared to be written to the disk.

Parallelizing data compression routines.

Before concentrations and fluxes are written to the disk, CALPUFF uses a data

compression routine to reduce size of the output file. The compression algorithm in

CALPUFF packs the concentration and flux fields by replacing sequences of zero val-

ues with negative floating point numbers whose absolute value indicates the number

of consecutive zeros that have been substituted for the single negative floating point

number. For instance:

0 0 0 0 1.3E-03 5.2E-03 2.3E-03 0 0

becomes

-4.0001 1.3E-03 5.2E-03 2.3E-03 -2.0001

Because each process only has data from their assigned receptors, all compressed fields

must be properly stitched together in the parallel variant of CALPUFF to obtain the

full species concentration and deposition fields. To properly reconstruct the global

fields, the end points of each compressed field must be communicated so that zero

counts may be updated, if necessary. For instance, if compressed field 1 ends with

a zero count of 2 (represented as -2.0001) and compressed field 2 begins with a zero
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count of 6 (represented as -6.0001), the zero counts must be added (represented as

-8.0002) by the PE assigned to field 2. (see below).

Field 1 before updating end point:

-4.0001 1.3E-03 5.2E-03 2.3E-03 -2.0001

Field 2 before updating end point:

-6.0001 4.3E-03 3.3E-03 2.1E-03 -2.0001

Field 1 after updating end point:

-4.0001 1.3E-03 5.2E-03 2.3E-03

Field 2 after updating end point:

-8.0002 4.3E-03 3.3E-03 2.1E-03 -2.0001

The global fields are properly stitched together when each PE writes its local field

to the disk (see Section 3.4). The final form of the entire compressed field must not

have consecutive zero counts as they will prohibit proper reading of the simulation

results in CALPOST. To facilitate this task of exchanging and updating zero counts

between PEs, we use an asynchronous, cascading send/ receive algorithm for all PEs

to exchange all concentration and flux field endpoints, with the exception of the first

and last PE which exchange just one end point, in subroutine comprs.

An attempt to use a collective communication operation (MPI ALL GATHER) for

the task of exchanging array end points elicited significant network strain using older

cluster hardware that would sometimes cause the communication operations to fail

when a large number of clustered nodes were used. The cascading send/ receive algo-

rithm has demonstrated good performance when using a larger number of clustered

nodes. During testing, both the collective operation and the cascading send/ receive

methods were revealed to take approximately the same amount of time to execute.
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myrank = 0 1 2 3

Rank 0 send right

Rank 1 send left

If myrank ≠ last rank

SEND END PT. TO NEIGHBOR TO MY RIGHT

If myrank ≠ 0

SEND START PT. TO NEIGHBOR TO MY LEFT

1. All processes send start and end points. 2. All processes receive start and end points.

If myrank = 0

RECEIVE END PT. FROM NEIGHBOR
TO MY RIGHT

If myrank = last rank

RECEIVE START PT. FROM
NEIGHBOR TO MY LEFT

else

RECEIVE START AND END PTS. FROM
NEIGHBORS TO MY RIGHT AND LEFT

Figure 3.2: Visual depiction of the cascading send/ receive algorithm used in parallel
CALPUFF used to exchange array start and end points.

3.2.1.1 Writing compressed concentration and flux fields in parallel

In addition to updating the end points of each PEs local concentration and flux fields,

the total number of non-zero and zero values for all global fields must be calculated

in subroutine comprs. This value is written to disk by the root PE immediately be-

fore all other PEs write their concentration and flux fields. CALPOST uses the total

number of non-zero and zero values in the algorithm that un-packs the compressed

concentration and flux fields. We implement a second cascading send /receive algo-

rithm in subroutine comprs to calculate this global value with the root PE (rank =

0) initiating the process by sending its total number of non-zero and zero values to

the next PE (rank = 1) where this PE will add its total number of non-zero and

zero values to the root PEs count and then send it to the next PE. The sending and

receiving continues until all processes have received the counts from their neighbors

and have added their counts to the running global sum. The last PE to receive the
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count will update its own count and then send the global count back to the root

process so that it can write it to disk before all PEs write their local fields.

The running global sum that passes between PEs is also used to assign the file pointer

location for each process in preparation for writing out the concentration and flux

fields. Extra bytes are added to each processors file pointer location to account for

the headers that are written by the root process ahead of the global fields. Before

the second cascading send/ receive algorithm, the root PE will pack both the file

pointer location and its local count of zero and non-zero concentrations or fluxes into

a variable for sending.

Initiate receive all processes wait to get package

if myrank.ne.0

RECEIVE FILE POINTER LOCATION AND LOCAL SUM FROM PROC. TO MY LEFT

global_sum = mysum + received sum

file ptr. loc. = received file pointer loc. + header offset

myoffset = received sum

endif

Initiate send

if myrank.ne.last rank

if myrank = 0

myoffset = 0

Pkg(1) = mysum

Pkg(2) = file pointer location

else

Pkg(1) = mysum
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Pkg(2) = received file pointer location

endif

SEND PACKAGE TO PROCESS TO MY RIGHT

endif

Last processor sends global sum to root process to write to disk

if myrank.ne.last rank

global_sum = mysum

SEND GLOBAL SUM TO ROOT PROCESS

elseif myrank = 0

RECEIVE GLOBAL SUM

endif

After each PE knows where to write its portion of the global field in the binary file,

the process of writing the concentration and flux fields to disk finally occurs. All

PEs enter subroutine wrdatc and write their portion of the global field using the file

pointer location that is calculated from the running sum of the number of zero and

non-zero concentrations in each PEs local field. After writing their fields to disk, the

PEs return to sample the concentration and flux fields at receptors for the next hour

that has been integrated and then they repeat the parallel output process.

3.2.2 Avoiding input file bottlenecks.

At the start of each hour, each PE needs to read meteorological data from the same file

at appoximately the same time. When several PEs are in use, bottlenecks can occur

during this process, degrading runtime performance. Here, using the MPI_BROADCAST

function, the root process broadcasts meteorological variables to all active PEs, lim-

iting the number of processes accessing the decreasing the bandwidth required by the

file system. This process, along with a summary of the architecture of the parallel

CALPUFF variant, is presented in figure 3.3.

23



3

2

1

Rank = 0 Data compression

Data compression

Data compression

Data compression

Writes output

Writes output

Writes output

Writes output

All processes sample gridded 

receptors in their assigned domain

All processes send and 

receive data array endpoints 

from their neighbor(s) and file 

pointer location is passed to 

all processes

All processes output results 

from only their receptors

Rank = 0

2

1

3

MET.DAT

Process 0 reads and 

broadcasts meteorology 

to all processes

Figure 3.3: Anatomy of parallel CALPUFF gridded receptor sampling and parallel
output implementation with a 1-dimensional gridded receptor decompo-
sition across four processor elements.
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CHAPTER IV

Performance and scalability of parallel CALPUFF

We perform simulations with both CALPUFF (v5.8) and the parallel CALPUFF

models to quantify increases in computational performance, assess scalability, and

to assure consistent results between variants. We perform the test case simulation

(Section 2.1) using several clustered workstations using the Linux operating system.

Running together, these machines create a powerful and flexible distributed memory

parallel computer (Linux “Beowulf” system) that is suitable for large air quality

modeling calculations. Each node in this analysis, unless otherwise noted, uses an

Intel R© CoreTM2 Quad Q6600 processors (8MB Cache, 2.40 GHz, 1066 MHz FSB)

with 4GB DDR3 SDRAM. The network connecting each node was standard Gbps.

We vary the number of active PEs to assess computational scaling and efficiency. In

addition to the analyzing the performance improvements of running an 8-day test

case simulation (Section 2.1) with the parallel CALPUFF variant, we perform 90-day

and yearlong test scenarios to gauge resultant speed-ups for bigger problem sizes (i.e.

more emissions sources and longer integration times).

4.1 Computational scaling of an 8-day test scenario with the

parallel CALPUFF variant

We perform the 8-day simulation (outlined in section 2.1) using the parallel CALPUFF

model to asses speeds-ups and scalability. Amdahl’s Law relates the expected speed-

up to the number of processing elements used and the fraction of the code that can

be parallelized:
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S(N) =
1

(1− P ) + P
N

(4.1)

Where S is the expected speed-up factor, P is the fraction of the code that is affected

by parallelization, and N is the number of processor cores used.

Our profiling results reveal that around 99% of the sequential CALPUFF code in our

8-day test simulation is confined to the CALCPF subroutine, which we parallelize in

section 3.1. Due to this fact, we make the approximation that 99% of the CALPUFF

model can be parallelized, and Amdahl’s law simplifies to just a function of the

number of processor cores used:

S(N) =
1

(0.01) + 0.99
N

(4.2)

In the upper limit (N→∞), Ahmdahl’s law theoretically predicts a maximum speed-

up of 100. However, to due to overhead associated with communication between

processor elements and load imbalances (Section 5), this and other theoretical pre-

dictions by Ahmdahl’s law are rarely ever fully realized.

Figure 4.1 diagrams the computational scaling for this simulation, indicating the wall

clock time (hrs.) to complete the test scenario with 100 area sources as the number

of active processors is increased. Additionally plotted is the ideal behavior predicted

by Amdahls Law and the computational efficiency (%) defined as:

η =
Tot. Serial T ime

Num. PEs

1

Tot. Parallel T ime
(4.3)

We find that computational efficiency drops from 100% with one PE to just above

60% when 4 PEs are used. However, efficiency remains at or just above 50% using

between 12 and 52 PEs. Realized speed-ups closely follow the trend in ideal behavior
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predicted by Amdahl’s law until the number of PEs is greater than 52 and performance

degrades. Using 52 PEs, we find that the parallel CALPUFF variant completes the

8-day simulation with 100 area sources over 30 times faster than the serial variant.

The optimal number of conscripted PEs will vary depending on the size and type of

the problem performed by parallel CALPUFF.
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Figure 4.1: Computational scaling of the parallel CALPUFF variant for an 8-day
simulation with 100 area sources; a) computation (wall clock) time (hrs.)
versus total number of processor cores (solid black line with square mark-
ers); b) as for a) but with ideal computation (wall clock) time (hrs.)
predicted by Amdahl’s Law (dashed black line with square markers); c)
as for a) but with computational efficiency (%) versus total number of
processor cores (dashed red line with circle markers). Simulations were
performed using the settings specified in section 2 and the hardware used
was Intel R© CoreTM2 Quad Q6600 processor (8MB Cache, 2.40 GHz, 1066
MHz FSB) with 4GB DDR3 SDRAM. The time to complete the simu-
lation with the sequential model variant was 3.97 hrs. (data point not
shown on figure).
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4.2 Computational scaling of parallel CALPUFF as the num-

ber of sources increases

We find that increases in performance between the serial and parallel CALPUFF

variants are highly dependent upon the number of specified emission sources and the

length of the simulation time. Although we find a speed up of around 16 from with

parallel CALPUFF using 52 clustered nodes for the test simulation specified in sec-

tion 2.1, improvements in performance will likely be greater for larger problem sizes

(i.e. thousands of sources, thousands of receptors, long time integrations).

Using the same 8-day simulation period (04/01/2002 00:00 PST to 04/08/2002 23:00

PST) and 10 clustered nodes, we increase the number of sources to assess the scaling

for “larger problem sizes”. Figure 4.2 shows the time to complete the 8-day sim-

ulation using between 100 and 1000 area sources with an Intel R© CoreTM i5-3570T

(6MB Cache, up to 3.30 GHz) quad-core processors and 8GB DDR3 SDRAM. Figure

4.3 additionally shows profiling results from parallel CALPUFF, but for a 90-day

simulation (04/01/2002 00:00 PST to 06/29/2002 23:00 PST) using between 1000

and 10,000 area sources. An additional run of 20,000 area sources was started and

simulated two weeks out of 90 days before being stopped due to shifting computing

resource priorities on the University of California - Davis Beowulf cluster during the

2012 summer. We feel that a yearlong, simulation involving 20,000 area sources or

more, is possible with the parallel variant given that the conscripted computing hard-

ware has at least 8GB of memory to hold several million puffs on the grid at once.

Simulations involving tens of thousands of area sources and receptors were all but

impractical for the serial variant of CALPUFF, but now may be possible with the

parallel model. Because of this, speed-up calculations cannot be practically deter-

mined and therefore are not presented.
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In both profiling exercises examining the scalability of the parallel variant, input data

were read from an ApacheTM Hadoop R© distributed file system (HDFS). Speed-ups

of a factor of two were observed with parallel CALPUFF when the input data were

instead read from the network file system (NFS). Therefore the presented results

in figures 4.2 and 4.3 are likely a lower end estimates. Computational scaling for

simulations using several thousands of sources was not investigated due to computing

resource availability during the summer of 2012.
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Figure 4.2: Performance of parallel CALPUFF (hours) as a function of the total num-
ber of area sources for an 8-day simulation ran on 10 clustered nodes (40
processor elements) with an Intel R© CoreTM i5-3570T (6MB Cache, up
to 3.30 GHz) quad-core processor and 8GB DDR3 SDRAM. Input data
were read from an ApacheTM Hadoop R© distributed file system (HDFS).
Speed-ups of a factor of two were observed with parallel CALPUFF when
the input data were instead read from the network file system (NFS).
Profiling using the serial CALPUFF variant was not attempted.
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Figure 4.3: Performance of parallel CALPUFF (hours) as a function of the total num-
ber of area sources for an 90-day simulation ran on 10 clustered nodes (40
processor elements) with an Intel R© CoreTM i5-3570T (6MB Cache, up
to 3.30 GHz) quad-core processor and 8GB DDR3 SDRAM. Input data
were read from an ApacheTM Hadoop R© distributed file system (HDFS).
Speed-ups of a factor of two were observed with parallel CALPUFF when
the input data were instead read from the network file system (NFS).
Profiling using the serial CALPUFF variant was not attempted.

4.3 Numerical accuracy of parallel CALPUFF

Numerical equivalence in the results for this exercise is paramount for current EPA

endorsements to remain, and for this project we adopt the objective of upholding this

standard. Previous published attempts to accelerate CALPUFF have either failed to

produce consistent results between serial and parallel variants [Cremades et al., 2010]

or consistency was not explored [Suk-Hyun et al., 2011].

In this section, we present an additional test case ran with both the serial and paral-
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lel CALPUFF variants consisting of a year-long run with 698 area sources to verify

numerical accuracy for a moderately sized application that can be simulated using

both models in a reasonable amount of wall clock time to allow for a critical evalu-

ation of the numerical results. We present a companion statistical assessment of the

numerical accuracy of the parallel model variant relative to the results from the serial

model using appropriate metrics. As presented in section 2.1, we model emissions

from diesel and diesel-electric powered ocean-going freight vessel emissions off the

California Coast. We do not output wet and dry deposition fluxes from the model

due to the associated performance penalties.

Concentration fields from the serial variant were generated by splitting up the area

sources into 7 groups of 98 or 100 area sources and then simultaneously running each

group of emissions sources with the sequential version of the CALPUFF model on

seven individual PEs in a “pseudo-parallel” approach. Results from each of the seven

simulations were then added together using the CALPUFF system utility CALSUM3.

This strategy has been a popular method implemented by users of the traditional

serial CALPUFF model when dealing with a large number of sources as it would

likely take several weeks to complete the simulation if one PE was assigned all 698

sources. We use 15 clustered quad core nodes to perform the simulation with paral-

lel CALPUFF to perform the same simulation scenario. A schematic showing both

modeling approaches and simulation times is shown in figure 4.4.

The simulation time given for the sequentially coded variant (fig. 4.4) is the longest

amount of time taken to simulate one of the seven concentration fields using one

of the seven individual processing elements that is assigned a fraction of the 698

total sources. It should be noted that the simulations performed with the serial

3CALSUM source code available at: http://www.src.com/calpuff/download/mod6_codes.htm
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model were performed on older computing hardware and therefore does not elicit a

direct comparison to the time taken for the parallel variant to simulate the same

scenario using 15 quad core clustered nodes. As such, we urge caution in judging the

performance of the parallel variant solely from this exercise. Additional simulations

are needed to accurately gauge speed-ups.

100 Area Sources 100 Area Sources 100 Area Sources 100 Area Sources 100 Area Sources 98 Area Sources

CALSUM
698 Area Sources

(13.2 days)

698 Area Sources
60 Processors

(1.3 days)

CALPUFF version 5.8 Parallel CALPUFF

100 Area Sources

Figure 4.4: Schematic showing approach to using both the serial and parallel vari-
ant of CALPUFF with 698 sources. Approach using the serial variant
divides up the 698 sources evenly and utilizes seven individual comput-
ing resources. The resultant seven concentration fields are then added
using the utility, CALSUM. Timing information for the serial variant is
presented as the longest amount of time taken to simulate one of the
seven concentration fields using one of the seven individual computing re-
sources. The parallel model utilized 60 processor cores across 15 clustered
nodes to simulate a yearlong scenario.

A field plot of the annual average PM10 concentrations (µg m−3) resultant from the

emissions from ocean-going vessels off the coast of California for 2005 is shown in

figure 4.5 from both the serial variant (a.) and the parallel variant (b.). The results

from the parallel variant appear equivalent to that of the serial model.

More quantitative metrics of model inter-comparison are shown in both figure 4.6 and

table 4.1. Each pollutant species (concentrations from the 75th percentile or greater)

from CALPUFF is plotted against the serial and parallel variant in figure 4.6. The

parallel variant nearly exactly reproduces the results from the serial variant.

32



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-400 -300 -200 -100 0 100 200 300 400 500

-400

-300

-200

-100

0

100

200

300

400

500

 Parallel CALPUFF  

b. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-400 -300 -200 -100 0 100 200 300 400 500

-400

-300

-200

-100

0

100

200

300

400

500 a. 

serial CALPUFF (v5.8) 

A
nn

ua
l A

vg
. P

M
10

 (μ
g/

m
3 )

 

Lambert X (km) Lambert X (km) 

La
m

be
rt 

Y 
(k

m
) 

La
m

be
rt 

Y 
(k

m
) 

Figure 4.5: Annual average PM10 concentrations (µg m−3) resultant from the emis-
sions from ocean-going vessels off the coast of California parameterized
in the model as 698 area sources; a) are from the serial CALPUFF vari-
ant (version 5.8—level 070623); b) are from parallel CALPUFF. All re-
sults are processed with the post-processing software, CALPOST. Parallel
CALPUFF results are obtained 10 times faster using 15 cluster nodes than
when using the sequential CALPUFF variant (version 5.8—level 070623).
Both simulations performed on Intel R© CoreTM2 Quad Q6600 processors
(8MB Cache, 2.40 GHz, 1066 MHz FSB) with 4GB DDR3 SDRAM.
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Significant digits of accuracy (SDA) [Sandu et al., 1997] is used to measure the detailed

numerical differences between the parallel and serial variant. We calculate SDA using:

SDA = − log

maxk ·
√√√√( ∑

Ck,j≥a

1

)−1
·

∣∣∣∣∣ ∑
Ck,j≥a

Cserial
k,j − Ck,j

Cserial
k,j

∣∣∣∣∣
2
 (4.4)

This metric incorporates a modified root mean square norm of the relative difference

of the parallel solution (Ck,j) with respect to the serial solution (Cserial
k,j ) for species

k at receptor j. A minimum threshold value, a, prevents inclusion of small concen-

trations that are not meaningful. We, however, adopt a value of 0 for a to assess

differences across all modeled concentrations which span a several orders of magni-

tude.

Additional metrics used to evaluate numerical accuracy are mean bias, normalized

mean bias, and normalized mean error. Results for all model evaluation statistics are

presented in table 4.1. The parallel variant is able to reproduce each concentration

from 2 to 5 significant digits; however, the biases in all simulated concentrations are

negligible, ranging from 1×10−6 to 1×10−9 µg m−3.

Species PM10 SO2−
4 NO−3 SO2 NH3 HNO3 NOx

Mean Bias (µg m−3) -1.27E-06 -6.03E-07 9.22E-09 -2.35E-06 -1.65E-08 -1.05E-06 -2.29E-06
NMB (%) -2.73E-04 -1.30E-04 1.97E-06 -1.88E-04 -2.51E-04 -1.91E-04 -7.26E-05
NME (%) 3.34E-04 2.22E-04 8.73E-05 2.38E-04 3.10E-04 2.51E-04 1.10E-04
SDA 3 4 4 2 5 3 2

Table 4.1: Mean bias (µg m−3), normalized mean bias (%), normalized mean er-
ror (%), and significant digits of accuracy for each modeled CALPUFF
species as an annual average from parallel CALPUFF relative to serial
CALPUFF (version 5.8—level 070623) from a yearlong simulation using
698 area sources.

Mean Bias =
1

Nreceptors

N∑
i=1

(Cserial − Cparallel) (4.5)
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Normalized Mean Bias =

∑N
i=1 (Cserial − Cparallel)∑N

i=1Cserial

× 100% (4.6)

Normalized Mean Error =

∑N
i=1 |Cserial − Cparallel|∑N

i=1Cserial

× 100% (4.7)
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CHAPTER V

Recommended future improvements

Although the parallel CALPUFF model has shown promising performance improve-

ments that open new avenues for applications, there are areas for additional speed-

ups. Most notably are redundant “puff” calculations performed by each process and

load imbalances between processes that may result in underuse of processor elements.

Some air quality model grids, like the gridded receptors in CALPUFF, can be dimen-

sioned unequally in the x- and y- directions (i.e. either a square or rectangle) and,

depending upon the number of partitions (or active processing elements), may result

in a configuration where processors are assigned unequal numbers of grid cells, or

receptors, to sample creating load imbalances. Load imbalances may result in proces-

sors with smaller workloads waiting for other process elements with greater workloads

to finish their tasks. In addition to unequal domain decompositions, instances where

puff sampling is unequal (i.e. spatially uneven distribution of emissions sources) may

result in a wide range of CPU use. This is the case for the scenario presented in

Section 4.3 as the majority of area emissions are confined to the San Francisco Bay

and the Los Angeles and Long Beach shipping ports. When the receptor domain is

divided up amongst the active PEs, the PEs assigned the receptors near these ports

will have the greatest amount of puff sampling to perform.

We define a metric to describe this imbalance result, CPU occupancy, defined as the

fraction of time each processor spends on receptor sampling during the course of a

simulation. A plot of CPU occupancy versus processor element ID is presented in fig-

ure 5.1. Processor elements with higher CPU occupancy fractions are in regions where
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many puffs must be sampled (e.g. near shipping ports, in this case), whereas proces-

sor elements with lower CPU occupancy fractions are in areas where there are fewer

emission sources and fewer puffs to sample. We propose using a dynamic workload

decomposition, rather than the current static workload (receptor) decomposition, to

correct for these imbalances and improve performance.

0 10 20 30 40 50 60 70 80
0

0.5

1

Processor Element
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up
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cy

 (%
)

Figure 5.1: CPU occupancy (%), defined as the fraction of time each processor spends
on gridded receptor sampling, for each processor element for a yearlong
simulation (see Sections 2.1 and 4.3) using 76 processors.

The performance of parallel CALPUFF will improve as the averaging times are in-

creased from the default 1-hour average to the maximum allowed averaging period

of 1-year because of the decreased frequency that inter-CPU communication must

occur (Section 3.2) before concentration and flux fields are written to binary output.

However, users must be careful as the EPA only endorses the hourly concentration

output for regulatory applications.

5.1 Redundant “puff” calculations and machine memory lim-

itations

Under high spatial resolution applications of parallel CALPUFF (e.g. California’s

San Joaquin Valley simulated at 250-m × 250-m resolution with 20,000 sources, and
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160,000+ discrete receptors, integrated forward in time for one year), machine mem-

ory limitations may arise. The dimensioning of the arrays that hold receptor, puff,

and meteorological information in CALPUFF are set at compile time. High spatial

resolution applications require these arrays to have substantailly larger dimensions

than when the model is used a lower spatial resolution. Sufficient machine memory

is required to meet these demands.

A potenital solution to this computational performance hinderance is to free ma-

chine memory space for each proccess by avoiding redundant “puff” calculations

through fully decomposing the modeling domain’s meteorological fields, emission

sources, and “puffs” in addition to the already decomposed receptor domain. This

future task will be necessary for such high-resolution applications to be possible with

out upgrading machine memory hardware (e.g. from 8 GB RAM to 16 GB RAM).
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CHAPTER VI

Conclusions

In this report we assess the feasibility of and implement a strategy to improve the

computational performance of CALPUFF (version 5.8—level 070623), a regulatory

source-receptor air quality model approved by the EPA for long distance air pollution

transport. We propose and implement a strategy using the MPICH-2 library. The

approach performs a 1-dimensional domain decomposition of all receptors across all

active processors. A parallel output routine is also implemented to reduce perfor-

mance penalties associated with inter-process communication. Speed-ups of 16 over

the serial variant are realized, and the capability to simulate tens of thousands of

emissions sources is proven, thus allowing for many new applications of the model

to be possible. We find equivalent numerical results between the parallel and serial

model variants. The biases in all simulated concentrations are negligible, ranging

from 1×10−6 to 1×10−9 µg m−3, and the model is able to reproduce each species

concentration from 2 to 5 significant digits. Future improvements to the parallel

model that may improve computational performance include fully decomposing the

modeling domain’s meteorological fields, emission sources, and “puffs”. The parallel

CALPUFF variant should be a useful tool for regulatory modeling when the num-

ber of receptors and/or emission sources is too great to complete a simulation in a

reasonable amount of time using the serial model variant.

40



AUXILLARY MATERIAL A
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Figure A.1: Scaling of parallel output using an explicit offset file pointer method
versus using a shared file pointer method presented as fraction of com-
putational time versus number of processor elements. Results are from
an 8-day simulation using 100 area sources.
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A.1 Listing of Fortran code additions and modifications

Fortran routine Purpose

mpif mod.f90 Tells routine to include ’mpif.h’%

mpriranktasks mod.f90 Hold processor rank element and number of active tasks%

mpiwrdatucr.F Write an uncompressed discrete CTSG receptor concentration/ flux data record in parallel‡

mpiwrdatur.F Write an uncompressed discrete receptor concentration/ flux data record in parallel‡

mpilaunch.f90 Launch MPI%

mpidecomp mod.f90 Hold the MPI decomposition variable information‡

mpifilesize mod.f90 Hold the file size in bytes for the explicit offset pointer ‡

mpiopenlog.f90 Open a log file for each processor element‡,%

mpiwrout1.F Write the header records to output files‡,#

mpiopenot.F Open all input/output files‡,#

mpiwrdatu.F Write an uncompressed gridded concentration or dry/wet flux data record in parallel‡,#

mpioutsam.F Write a gridded field of real or integer numbers in parallel‡,#

mpidecomp1D.F Decompose gridded, non-gridded discrete, and CTSG receptors 1-dimensionally‡

mpiwrdatc.F Write a compressed gridded concentration/ flux data record in parallel‡,#

mpioutput.F Output concentration dry and wet deposition fields in parallel‡,#

mpicomprs.F Compress output array in parallel‡,#

mpixtract.F Extract sampling receptor grid from computational grid‡,#

params.puf Removed hard coded I/O unit numbers for parallel output‡,#

CALPUFF.FOR ∗ Main CALPUFF program‡,#,%

Table A.1: *Modified internal subroutines MAIN, SETUP, OPENOT, WROUT1,
CALCPF, CALCBC, OUTPUT, COMPRS, FIN, FOGOUT, QAPLOT1,
COMP, READCF, RESTARTO, MFLXHDR, MBALHDR, PLMFOG,
OUTSAM (‡) Created or modified by D.J. Rasmussen (UC-Davis), (%)
Created or modified by Dazhong Yin (CARB), (#) Created by Joe Scire
(T.R.C/ Earth Tech)
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A.2 CALPUFF test case control file

Variable Description EPA Default Our Values
METDAT CALMET input data filename CALMET.DAT secaq22002.dat
PUFLST Filename for general output from

CALPUFF
CALPUFF.LST CALPUFF.LST

CONDAT Filename for output concentration data CONC.DAT parallel test.con
DFDAT Filename for output dry deposition fluxes DFLX.DAT DFLX.DAT
WFDAT Filename for output wet deposition fluxes WFLX.DAT WFLX.DAT
VISDAT Filename for output relative humidities

(for visibility)
VISB.DAT VISB.DAT

IBYR Beginning year User Defined 2002
IBMO Beginning month User Defined 4
IBDY Beginning day User Defined 1
IBHR Beginning hour User Defined 1
IRLG Length of runs (hours) User Defined 192
NSPEC Number of species modeled (for MESOP-

UFF II chemistry)
User Defined 7

NSE Number of species emitted 3 4
MRESTART Restart options (0 = no restart), allows

splitting runs into smaller segments
0 0

METFM Format of input meteorology (1= CAL-
MET)

1 1

AVET Averaging time lateral dispersion parame-
ters (minutes)

60 60

MGAUSS Near-field vertical distribution (1 = Gaus-
sian)

1 1

MCTADJ Terrain adjustments to plume path (3 =
Plume path)

3 1

MCTSG Do we have subgrid hills? (0 = No),
allows CTDM-like treatment for subgrid
scale hills

0 0

MSLUG Near-field puff treatment (0 = No slugs) 0 0
MTRANS Model transitional plume rise? (1 = Yes) 1 1
MTIP Treat stack tip downwash? (1 = Yes) 1 1
MSHEAR Treat vertical wind shear? (0 = No) 0 0
MSPLIT Allow puffs to split? (0 = No) 0 0
MCHEM MESOPUFF-II Chemistry? (1 = Yes) 1 1
MAQCHEM Aquesous phase transformation modeled?

(0 = No)
0 0

MWET Model wet deposition? (1 = Yes) 1 1
MDRY Model dry deposition? (1 = Yes) 1 1
MDISP Method for dispersion coefficients (3 = PG

& MP)
3 3

MTURBVW Turbulence characterization? (Only if
MDISP = 1 or 5 )

3 3

MDISP2 Backup coefficients (Only if MDISP = 1 or
5)

3 3
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Variable Description EPA Default Our Values
MROUGH Adjust PG for surface roughness? (0 =

No)
0 0

MPARTL Model partial plume penetration? (0 =
No)

1 0

MTINV Elevated inversion strength (0 = compute
from data)

0 0

MPDF Use PDF for convective dispersion? (0 =
No)

0 0

MSGTIBL Use TIBL module? (0 = No) allows treat-
ment of subgrid scale costal areas

0 0

MREG Regulatory default checks? (1 = Yes) 1 0
CSPEC Names of species modeled (for MESOPUF

II, must be SO2, SO4, NOx, HNO3, NO3)
User Defined SO2, SO4, NOX,

HNO3, NO3,
PM10, NH3

NX Numer of eas-west grids of input meteorol-
ogy

273

NY Number of north-south grids of input me-
teorology

User Defined 273

NZ Number of vertical layers of input meteo-
rology

User Defined 12

DGRIDKM Meteorology grid spacing (km) User Defined 4
ZFACE Vertical cell face heights of input meteorol-

ogy
User Defined 0.,20.,40.,80.,160.,300.,600.,1000.,

1500.,2200.,3000.,4000.0,5000.0
XORIGKM Southwest corner (east-west) of input me-

teorology
User Defined -497.132

YORIGIM Southwest corner (north-south) of input
meteorology

User Defined -494.91

IUTMZN UTM zone User Defined 19
XLAT Latitude of center of meteorology domain User Defined 37N
XLONG Longitude of center of meteorology User Defined 120.5W
XTZ base time zone of input meteorology User Defined PST
IBCOMP Southwest of X-index of computational do-

main
User Defined 1

JBCOMP Southwest of Y-index of computational do-
main

User Defined 1

IECOMP Northeast of X-index of computational do-
main

User Defined 273

JECOMP Northeast of X-index of computational do-
main

User Defined 273

LSAMP Use gridded receptors (T = Yes) T T
IBSAMP Southwest of X-index of receptor grid User Defined 1
JBSAMP Southwest of Y-index of receptor grid User Defined 1
IESAMP Northeast of X-index of receptor grid User Defined 273
JESAMP Northeast of Y-index of receptor grid User Defined 273
MESHDN Gridded receptor spacing =

DGRIDKM/MESHDN
1 1

ICON Output concentrations? (1 = Yes) 1 1
IDRY Output dry deposition flux? (1 = Yes) 1 0
IWET Output wet deposition flux? (1 = Yes) 1 0
IVIS Output RH for visibility calculations (1

=Yes)
1 0
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Variable Description EPA Default Our Values
LCOMPRS Use compression option in output? (T =

Yes)
T T

ICPRT Print concentrations? (0 = No) 0 0
IDPRT Print dry deposition fluxes? (0 = No) 0 0
IWPRT Print wet deposition fluxes? (0 = No) 0 0
ICFRQ Concentrtion print interval ( 1 = hourly) 1 1
IDFRQ Dry deposition flux print interval (1 =

hourly)
1 1

IWFRQ Wet deposition flux print interval (1 =
hourly)

1 1

IPRTU Print output units ( 1 = g/m**3;
g/m**2/s)

1 1

IMESG Status messages to screen (2 = Yes) 2 2
Output
Species

Where to output various species User Defined All modeled
species

LDEBUG Turn on debug tracking? (F = No) F F
Dry Gas Dep. Chemical parameters of gaseous deposition

species
User Defined SO2, NOX

Dry Part.
Dep.

Chemical parameters of particulate depo-
sition species

User Defined for diesel partic-
ulate matter

RCUTR Reference cutivle resistance (s/cm) 30 30
RGR Reference ground resistance (s/cm) 10 10
REACTR Reference reactivity 8 8
NINT Numer of particle-size intervals 9 9
IVEG Vegetative state (1 = active and un-

stressed)
1 1

Wet Dep Wet deposition parameters User Defined for diesel partic-
ulate matter

MOZ Ozone background? (1 = read from
ozone.dat)

1 0

BCKO3 Ozone default (ppb) (Use only for missing
data)

80 80

BCKNH3 Ammonia background (ppb) 10 10
RNITE1 Nighttime SO2 loss rate (%/hr) 0.2 0.2
RNITE2 Nighttime NOX loss rate (%/hr) 2 2
RNITE3 Nighttime HNO3 loss rate (%/hr) 2 2
SYTDEP Horizontal size (m) to switch to time de-

pendence
550 550

MHFTSE Use Heffer for vertical dispersion? (0 =
No)

1 1

JSUP PG Stability class above mixed layer 5 5
CONK1 Stable dispersion constant (Eq. 2.7-3) 0.01 0.01
CONK2 Neutral dispersion constant (Eq. 2.7-4) 0.1 0.1
TBD Transition for downwash algorithms (0.5 =

ISC)
0.5 0.5

IURB1 Beginning urban landuse type 10 10
IURB2 End urban landuse type 19 19
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A.3 User Guide to Parallel CALPUFF

1. Requirements

Parallel CALPUFF is written in Fortran and must be compiled with a Fortran com-

piler, such as the Intel Fortran Compiler (IFORT). The IFORT compiler is free under

non-commercial-use licenses, and binary packages are available online for public down-

load.1

Parallel CALPUFF must be run in a UNIX environment with the Message Passing In-

terface - Chameleon (MPICH) library properly installed. MPICH is free, and binary

packages are available online for public download. There are currently no existing

non-MPI companion algorithm and routines in the parallel CALPUFF code.2

2. Compile parallel CALPUFF

Once the aforementioned system requirements have been met, the next step is to

un-tar and un-zip the parallel CALPUFF source code.

$ tar -zxvf parallel_CALPUFF.tar.gz -C /target_directory

In the target directory (the directory that was un-tar’ed) will be a number of files and

three directories. The source code in the directory f90_src must be compiled before

the parallel CALPUFF executable is built. To do this from the target directory:

$ cd f90_src

...then...

$ make

1IFORT binary packages for UNIX available at: http://software.intel.com/en-us/

non-commercial-software-development
2MPICH binary packages for UNIX available at: http://www.mpich.org/downloads/
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One the object files in f90_src are compiled, the parallel CALPUFF executable may

be built in the target directory:

$ cd ..

...then...

$ make

If compilation was successful, the parallel CALPUFF executable should now be built.

Check to see if it is in the target directory:

$ ls calpuff.exe

3. Setup CALPUFF list file

Like any CALPUFF simulation, the list or control file needs to have the proper paths

to input and output files and the desired model settings adjusted. This is done by

editing the input file (*.inp). There is an example input file in the un-tar’ed target

directory. The input file must be in the directory with the model data for thees in-

structions to be successful, see shell script run parallel calpuff.sh

4. Conscript machines to run parallel CALPUFF

Use the script farm to nodes.sh to start mpd on the master node (e.g. node 200) and

get the mpd port number using:

$ ./farm_to_nodes.sh -b 200 200 "mpd -d -e"

This should retreive the port number, for instance:

mpd_port=51204
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Determine what nodes will run parallel CALPUFF with the master node (e.g. node

200) and then use the script farm to nodes.sh and port number to start a ring:

$ ./farm_to_nodes.sh -b 191 199 "mpd -d -h n200 -p 51204"

This will start a 10 node ring with node 200 as the master node.

5. Execute parallel CALPUFF

Parallel CALPUFF must be executed from the master node. Remote shell to the

master node and change directory to where parallel CALPUFF files were unpacked:

$ rsh n200

user@n200 $ cd ../../target_directory

The script run parallel calpuff.sh starts the parallel CALPUFF simulation on the

constructed ring of nodes and is executed on the master node in the following manner:

user@n200 $ nohup ./run_parallel_calpuff.sh > run.log 2>&1 &

This places the simulation in the background and writes both standard output and

error messages to a log file. At any time, the trailing contents of the log file can be

viewed in real-time by entering:

user@n200 $ tail f run.log

You may log out and the simulation will continue to run.

48



BIBILIOGRAPHY

Bennett, M. J., M. E. Yansura, I. G. Hornyik, J. M. Nall, D. G. Caniparoli, and C.
G. Ashmore (2002), Evaluation of the CALPUFF Long-range Transport Screening
Technique by Comparison to Refined CALPUFF Results for Several Power Plants in
Both the Eastern and Western United States., paper presented at Proceedings of the
Air & Waste Management Association’s 95th Annual Conference, Baltimore, MD,
June 23-27, 2002.

CARB (2008), Appendix E1: CALPUFF Dispersion Modeling of Ocean-Going Ves-
sels Emissions, 21.

Cremades, P. G., E. S. Puliafito, and R. P. Fernandez (2010), GPU Acceleration of
CALPUFF, Mecnica Computacional, XXIX(71), 7043-7051.

Dabdub, D., and J. H. Seinfeld (1994), Air quality modeling on massively parallel
computers, Atmos Environ, 28(9), 1679-1687.

Dabdub, D., and J. H. Seinfeld (1996), Parallel computation in atmospheric chemical
modeling, Parallel Comput, 22(1), 111-130.

Dabdub, D., and R. Manohar (1997), Performance and portability of an air quality
model, Parallel Comput, 23(14), 2187-2200.

Elbern, H. (1997), Parallelization and load balancing of a comprehensive atmospheric
chemistry transport model, Atmos Environ, 31(21), 3561-3574.

Emery, C., G. Wilson, and G. Yarwood (2008), CAMx MULTIPROCESSING CA-
PABILITY FOR COMPUTER CLUSTERS USING THE MESSAGE PASSING IN-
TERFACE (MPI) PROTOCOLRep., ENVIRON International Corportation.

Grell, G. A., J. Dudhia, and D. R. Stauffer (1995), A description of the fifth-generation
Penn State/NCAR mesoscale model (MM5), NCAR Technical Note, NCAR/TN-
398+STR, 122pp. Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost,
W. C. Skamarock, and B. Eder (2005), Fully coupled online chemistry within the
WRF model, Atmos Environ, 39(37), 6957-6975.

Gropp, W. (2002), MPICH2: A New Start for MPI Implementations, in Proceed-
ings of the 9th European PVM/MPI Users’ Group Meeting on Recent Advances in
Parallel Virtual Machine and Message Passing Interface, edited, p. 7, Springer-Verlag.

49



Gropp, W., E. Lusk, and A. Skjellum (1994), Using MPI: Portable Programming with
the Message Passing Interface, MIT Press, Cambridge, MA.

Jin, H. Q., D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chapman (2011),
High performance computing using MPI and OpenMP on multi-core parallel systems,
Parallel Comput, 37(9), 562-575.

Kumar, N., E. Segall, P. Steenkiste, and A. G. Russell (1997), Parallel and distributed
application of an urban-to-regional multiscale model, Computers &; Chemical Engi-
neering, 21(4), 399-408.

Levin, E. (1989), GRAND CHALLENGES TO COMPUTATIONAL SCIENCE, Com-
munications of the Acm, 32(12), 1456-1457.

Levy, J. I., J. D. Spengler, D. Hlinka, D. Sullivan, and D. Moon (2002), Using
CALPUFF to evaluate the impacts of power plant emissions in Illinois: model sensi-
tivity and implications, Atmos Environ, 36(6), 1063-1075.

Molnr Jr, F., T. Szakly, R. Mszros, and I. Lagzi (2010), Air pollution modelling using
a Graphics Processing Unit with CUDA, Computer Physics Communications, 181(1),
105-112.

Sandu, A., J. G. Verwer, M. Van Loon, G. R. Carmichael, F. A. Potra, D. Dabdub,
and J. H. Seinfeld (1997), Benchmarking stiff ode solvers for atmospheric chemistry
problems-I. implicit vs explicit, Atmos Environ, 31(19), 3151-3166.

Saylor, R. D., and R. I. Fernandes (1993), On the parallelization of a comprehensive
regional-scale air quality model, Atmospheric Environment. Part A. General Topics,
27(4), 625-631.

Scire, J. S., D. G. Strimaitis, and R. J. Yamartino (2000a), A User’s Guide for the
CALPUFF Dispersion Model (Version 5).

Scire, J. S., F. W. Lurmann, A. Bass, and S. R. Hanna (1984a), User’s guide to the
MESOPUFF II model and related processor programs. , U.S. Environmental Protec-
tion Agency, Research Triangle Park, NC, EPA-600/8-84-013.

Scire, J. S., F. W. Lurmann, A. Bass, and S. R. Hanna (1984b), Development of the
MESOPUFF II dispersion model., U.S. Environmental Protection Agency, Research
Triangle Park, NC, EPA-600/3-84-057.

Scire, J. S., F. R. Robe, M. E. Fernau, and R. J. Yamartino (2000b), A User’s Guide
for the CALMET Meteorological Model (Version 5). 332pp.

Seinfeld, J. H. (1989), Urban Air Pollution: State of the Science, Science, 243(4892),

50



745-752.

Suk-Hyun, Y., Y. Jin-Uk, K. Kyung-Ho, Y. Hee-Young, K. Youn-Seo, and K. Heey-
ong (2011), CALPUFF module acceleration with OpenMP

Tonse, S. R., and N. J. Brown (2007), Parallel Efficiency Analysis and Performance
Improvement of CMAQ V4.5 on a Beowulf Linux ClusterRep. No. 62896, Lawrence
Berkeley National Laboratory, Report prepared for California Energy Commission.

U.S. Environmental Protection Agency (2005), Revision to the Guideline on Air Qual-
ity Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain)
Dispersion Model and Other Revisions; Final RuleRep., 70 FR 68218-68261.

Zhou, Y., J. I. Levy, J. K. Hammitt, and J. S. Evans (2003), Estimating population
exposure to power plant emissions using CALPUFF: a case study in Beijing, China,
Atmos Environ, 37(6), 815-826.

Zlatev, Z. (1995), Computer Treatment of large air pollution models, 358 pp., Kluwer
Academic Publishers, Boston, MA.

51


